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Abstract
A total of 191 yeasts were isolated from 197 samples collected from eight estuarine mangrove forests along four different 
coastlines of Thailand (Andaman Sea and the East, North and West coasts of the Gulf of Thailand). Of these, 178 isolates 
were identified as 32 species in 16 genera of Ascomycota, 12 species in nine genera of Basidiomycota, and 13 isolates as 
potential new species, respectively. Mangroves located along the Andaman Sea coastline had a higher yeast diversity at the 
species and genera levels than those along the Gulf of Thailand. Kluyveromyces siamensis was the most frequently isolated 
species, whilst Candida tropicalis was the only species isolated at all eight sites. Screening isolated yeast strains belong-
ing to genera previously reported as oleaginous yeast plus the 13 potential new species, revealed two oleaginous strains, 
Rhodotorula sphaerocarpa 11-14.4 and Saitozyma podzolica 11-11.3.1. Both of these strains were isolated from the same 
mangrove forest on the Andaman Sea coastline. They could accumulate lipid when suspended in glucose solution without any 
supplementation, while the fatty acid composition and oil profile of Rh. sphaerocarpa 11-14.4 and Sait. podzolica 11-11.3.1 
were similar to vegetable oil and cocoa butter, respectively.
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Introduction

Mangroves, an ecotone ecosystems, that are transitional 
between terrestrial and marine habitats (Alongi et al. 2001) 
in estuaries of tropical and sub-tropical climate regions 
(Kathiresan and Bingham 2001). Mangroves are unusu-
ally rich in microbial species including yeasts. The yeasts 
are involved in detrital food chain in this ecosystem that is 
rich in degrading plant materials (Meyers et al. 1971) and a 
food source for some marine invertebrates and zooplanktons 
(Araujo et al. 1995; Kutty and Phili 2008; Fell et al. 2011).

In particular, some yeasts can accumulate intracellular 
lipids at high levels in the form of triacylglycerols as oil 
droplets (yeast oil) when they are grown under an excess 
carbon but limited nitrogen condition (Thanh 2006). The 
lower nitrogen condition causes an increased adenosine 
monophosphate (AMP) deaminase activity, which leads to 
decreased AMP and isocitrate dehydrogenase activity, and 
an accumulation of citrate in the TCA cycle. The citrate 
subsequently enters the fatty acid synthesis pathway upon 
conversion to acetyl CoA. Yeasts that accumulate intracel-
lular lipid above 20% (w/w) by dry cell weight (DCW) are 
defined as oleaginous (Ratledge 1989).

Yeast oils have already been developed as an alternative 
source of biofuels and high-valued oils for oleochemical 
industries (Papanikolaou et al. 2001; Sitepu et al. 2014; 
Bandhu et al. 2018). The major fatty acids in most yeast oils 
are myristic (C14:0), palmitic (C16:0), palmitoleic (C16:1), 
stearic (C18:0), oleic (C18:1), linoleic (C18:2) and linolenic 
(C18:3) acids, which is similar to those of plant oils that 
are used as feedstock for biodiesel production (Beopoulos 
and Nicaud 2012). Oils of several oleaginous yeast strains, 
such as Yarrowia lipolytica, Rhodosporidium toruloides 
and Cryptococcus curvatus, are mainly composed of steric, 
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oleic and palmitic acids, which is similar to cocoa butter, 
a high value natural fat extracted from cocoa beans (Has-
san et al. 1994, 1995; Papanikolaou et al. 2001, 2003; Wu 
et al. 2011). Oils of Rhodotorula mucilaginosa IIPL32 have 
a fatty acid composition, physicochemical and tribophysical 
properties suitable as a renewable base oil for biolubricant 
production (Bandhu et al. 2018). Oils of Pichia segobiensis 
SSOH12 had a considerable amount (16%) of palmitoleic 
acid, an omega 7, and may be suitable for medical applica-
tions (Schulze et al. 2014).

The usage of yeast for oil production provides better ben-
efits over plants or other microorganisms, as yeasts grow 
fast without effects from changing climatic or seasonal con-
ditions, not requiring land space for plantation compared 
with plant cultivation and easier for production expansion 
versus single cell algae, ability to use diverse carbon sources 
(Sitepu et al. 2014). The component of oil produced from 
yeasts will be different dependent on the carbon sources used 
(Ageitos et al. 2011). Therefore, yeast oil can be used in a 
variety of industries.

There are around 2400 km2 of mangrove forests in Thai-
land (Pumijumnong 2014), which are situated across four 
distinctively separate coastal regions along the Andaman 
Sea and the Gulf of Thailand (GOT) (Vibulsresth et al. 
1975) namely: (i) the Andaman Sea coastline on the west 
of Thailand, which covers the five provinces of Ranong, 
Phuket, Krabi, Trang and Satul; (ii) the northern GOT 

coastline, which covers the four provinces of Samut Pra-
karn, Samut Sakorn, Samut Songkram and Bangkok (iii) 
the eastern GOT coastline, which covers the five provinces 
of Trat, Chantaburi, Rayong, Cholburi and Chachoengsao; 
and (iv) the western GOT coastline, which covers the eight 
provinces of Petchaburi, Prachuap Khirikhan, Chumporn, 
Surathani, Nakorn Sri Thamarat, Songkhla, Pattani and 
Naratiwat (Fig. 1).

Oleaginous yeasts have been found in various habi-
tats, such as soil and the surface of flowers, fruits or plant 
leaves (Schulze et al. 2014; Jiru et al. 2016; Maina et al. 
2017). Mangrove forests are known to have a high yeast 
diversity, and as such there were several reports on new 
yeast species isolated from different mangrove forests and 
coastlines in Thailand (Limtong et al. 2004, 2007; Lim-
tong and Yongmanitchai 2010; Am-In et al. 2008, 2011). 
Lipid accumulation by yeasts is somewhat strain depend-
ent, and not species or genus dependent (Polburee et al. 
2015). There was a high success rate in obtaining oleagi-
nous yeast strain by screening from those capable to grow 
in nitrogen-limited medium (Kraisintu et al. 2010; Sitepu 
et al. 2013). The high yeast diversity in mangrove for-
ests increases the chance to isolate oleaginous yeast strain 
including new species of oleaginous yeast. Moreover, as 
the fatty acid composition of yeast oil is species depend-
ent, the new species of oleaginous yeast isolated increases 
chance to obtain new high value yeast oil.

Fig. 1  Map of sampling sites
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The objective of this study was to isolate diverse yeasts 
using nitrogen-limited medium from eight mangrove forests 
located in six provinces across the four different coastlines of 
Thailand, identifying the diversity of isolated yeasts, screen-
ing them for oleaginous yeast strains and characterizing their 
lipid production.

Materials and methods

Sample collection and yeast isolation

A total of 197 samples, comprised of soil, water and decayed 
biological matter, were collected from eight mangrove for-
ests at four different coastlines (Tables 1 and 2). The sam-
pled sites were (i) Ranong Biosphere Reserve (RBR; Ranong 
province) and (ii) Mangrove Resource Development station 
(MRDS) no. 11 (Ranong province) on the Andaman Sea 
coastline; (iii) MRDS no. 7 (Samut Songkhram province) on 
the northern GOT coastline; (iv) MRDS no. 2 (Chanthaburi 
province) (v) MRDS no. 4 (Trat province) and (vi) MRDS 
no. 45 (Trat province) on the eastern GOT coastline; and 
(vii) Pranburi National Forest Park (PNFP; Prachuap Khiri 
Khan province) and (viii) MRDS no. 6 (Phetchaburi prov-
ince) on the western GOT coastline (Fig. 1). The latitude 
and longitude of these sampled mangrove forests are shown 
in Table 1. 

Each sample (1 g or 1 ml) was inoculated into 10 ml of 
nitrogen-depleted medium (NDM; 20 g/l glucose, 0.85 g/l 
 KH2PO4, 0.15 g/l  K2HPO4·3H2O, 0.5 g/l  MgSO4·7H2O, 
0.1  g/l NaCl, 0.1  g/l  CaCl2·6H2O, 0.5  mg/l  H3BO3, 
0.04 mg/l  CuSO4·5H2O, 0.1 mg/l KI, 0.2 mg/l  FeCl3·3H2O, 
0.4 mg/l  MnSO4·H2O, 0.2 mg/l  Na2MOO4·2H2O, 0.4 mg/l 
 ZnSO4·7H2O, pH 5.5) and supplemented with 100 mg/l 
chloramphenicol and incubated at 30 ºC, 200 rpm for 2 d 
(Thanh 2006). The resultant culture was streaked on NDM-
agar and incubated at 30 ºC for 5 d. Purification to clonality 
of the culture was performed by the streak plate method on 
YM agar (3 g/l yeast extract, 3 g/l malt extract, 5 g/l peptone, 
10 g/l glucose, 20 g/l agar, pH 5.5). Each clonal culture was 
kept on a YM agar slant at 4 ºC for further study.

Molecular identification of yeast isolates

Genomic DNA extraction

Yeast cells were lysed in 200 µl lysis solution (60% (w/v) 
Yatalase, 6% (v/v) Yatalase buffer, 6% (w/v) RNase, 4.65% 
(w/v) NaCl, 10 mM  K2HPO4, 100 mM EDTA, pH 8) at 
37 °C for 1–2 h, vortex mixed with glass beads (diameter 
0.8 mm; Sigma-Aldrich Co., LLC., U.S.A.) in 8% (w/v) 
sodium dodecyl sulphate (67 µl) for 1.5 min and incubated 
at 60 °C for 10 min. The cell lysate was further mixed with 
87 µl of 3 M sodium acetate (pH 5) on ice, centrifuged at 
20,600×g, 4 °C for 5 min, and the supernatant was trans-
ferred into Acroprep 96 multi-well filter plate (PALL®, Pall 
corporation, U.S.A.) containing 110 µl isopropanol in each 
well. The DNA pellet obtained after centrifugation (1580×g, 
16 °C for 5 min) was washed twice with 200 µl of 70% (v/v) 
ethanol, dissolved in 60 µl TE buffer and kept at −20 °C 
until used.

(GTG)5 fingerprinting pattern

The extracted genomic DNA (1–20 ng/µl) was PCR ampli-
fied in a 10 µl reaction volume comprised of 1 µl DNA tem-
plate, 0.2 µl of 10 mM (GTG)5 primer (5′-GTG GTG GTG 
GTG GTG-3′) (Meyer et al. 1993), 5 µl 2 × Go Tag green and 
3.8 µl distilled water. The thermal cycling was performed 
at 95 °C for 5 min followed by 40 cycles of 95 °C for 45 s, 
50 °C for 1 min and 72 °C for 1 min, and then a final 72 °C 
for 6 min. The PCR products were resolved by 1.5% (w/v) 
agarose gel electrophoresis and visualized after ethidium 
bromide staining. The resolved pattern was defined as the 
(GTG)5 fingerprint pattern. The (GTG)5 fingerprint pat-
terns were grouped according to their respective relevant 
similarity.

Table 1  Location of the eight mangrove forest sampling sites in Thai-
land

Sampling sites: RBR (Ranong Biosphere Reserve); MRDS (Man-
grove Resource Development station); PNFP (Pranburi National For-
est Park)
Sources: S soil, W water, D decayed biological matter

Sampling site Province Latitude, longitude

Andaman Sea
 RBR Ranong 9.878145, 98.602366
 MRDS no. 11 Ranong 10.173566, 98.710563

Gulf of Thailand (a) North
  MRDS no. 7 Samut Songkhram 13.184048, 

100.020182
Gulf of Thailand (b) East
 MRDS no. 2 Chantaburi 12.381264, 

102.357817
  MRDS no. 4 Trat 12.169602, 

102.406304
 MRDS no. 45 Trat 12.208180, 

102.552114
Gulf of Thailand (c) 

West
  PNFP Prachuap Khiri Khan 12.412191, 99.984147
 MRDS no. 6 Phetchaburi 13.327734, 99.988013
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Table 2  Phylogenetic placement and related genera of the yeasts isolated from mangrove forests, number and proportion of the strains and 
sources

Phylogene�c placement, 
related genus

Closest related species Strains Representa�ve 
strains (GenBank 
accession no.)

Source
S W D

Basidiomycota

Pucciniomyco�na

Microbotryomycetes

Rhodotorula Rhodotorula paludigena 1-4W.1a, 11-2W.2b, 11-14.7 b

WW1.2d, BW7.3e, BW8.1e, 
BW1.3e, BW9.1e, BW7.1e,  
BW8.5e, MTW11.1f, MTW9.2f,  

BW7.3 (LC435579)

Rhodotorula sphaerocarpa 11-14.4b 11-14.4 (LC335750)

Rhodotorula toruloides 1-1.2a 1-1.2 (LC435580)

Rhodotorula mucilaginosa 11-1W.1.1b, 11-2W.1b 11-1W.1.1 
(LC435581)

Cystobasidiomycetes

Sakaguchia Sakaguchia aff. lamellibrachiae MTW10.1f MTW10.1
(LC435582)

Agaricomyco�na

Tremellomycetes

Saitozyma Saitozyma podzolica 1-5W.5.1a, 11-15.5.1b, 11-11.3.1b 11-11.3.1 
(LC335751)

Papiliotrema Papiliotrema flavescens 11-10W.3b, BW1.2e 11-10W.3 
(LC435583)

Papiliotrema lauren�i 1-3W.1a,  MTT4.1f 1-3W.1 (LC435584)

Naganishia Naganishia liquefaciens 11-2W.7b 11-2W.7 (LC435585)

Naganishia albida 11-1W.1b 11-1W.1 (LC435586)

Kwoniella Kwoniella dejec�cola 11-12.2b,11-15.7.1b 11-12.2 (LC435587)

Heterocephalacria Heterocephalacria aff. arrabidensis 1-7W.1a 1-7W.1 (LC270815)

Hannaella Hannaella phetchabunensis 11-14.6b 11-14.6 (LC435588)

Goffeauzyma Goffeauzyma aff. gilvescens 11-8.2b 11-8.2 (LC435590)

Us
laginomyco
na

Us
laginomycetes

Pseudozyma Pseudozyma hubeiensis BW3.3.1e, BW3.4e, BW6.2e BW3.3.1 (LC435589)

Ascomycota

Saccharomyco�na

Saccharomycetes

Lodderomyces/Spathaspora Candida tropicalis 1-6.4a, 11-17.2b, NSK5-1c, NSK 6-
1c, NSK7-1c, NSK15-2c, NSK 17-1c, 
NWK4-1c, NWK5-2c, WW 8.2d, 
WS7.7. 2d, BS3.1e, BW5.2e, 
BW7.4e, BW9.6e, MTW3.1.2f, 
MTW4.3f, MTT5.1. 2f, NSP10-1g, 
NSP23-1g NWB3-1h, NWB7-1h

WS7.7.2 (LC435591)

Candida viswanathii NSP22-2g NSP22-2 (LC435592)

Candida maltosa 11-1.1b, 11-3W.4b 11-3W.4 (LC435593)

Candida orthopsilosis BW8.4e BW8.4 (LC435594)

Suhomyces Suhomyces atakaporum 1-3W.6.4a, 1-5W.5.2a 1-3W.6.4
(LC435595)

Wickerhamomyces Wickerhamomyces anomalus NWB2-3h NWB2-3 (LC435596)

Candida aff. quercuum NSK9-2c, NSK13-2c NSK9-2 (LC335754)

Debaryomyces Debaryomyces nepalensis MTW3.1.3f, NSB6-1h, NSB7-1h NSB6-1 (LC435597)

Schwanniomyces Schwanniomyces polymorphus BW4.2e BW4.2 (LC435598)

Schwanniomyces vanrijiae var. 11-12.1b, 11-14.1b, 11-16.1b, 11- 11-12.1 (LC435599)
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Table 2  (continued)
vanrijiae 15.3b

Meyerozyma Meyerozyma guilliermondii BW5.6e BW5.6 (LC435600)

Yamadazyma Yamadazyma aff. mexicana NWB2-1h NWB2-1 (LC435601)

Yamadazyma Mexicana NWK2-1c NWK2-1 (LC435602)

Candida andamanensis NSP11-1g NSP11-1 (LC435603)

Candida amphicis WT1.3d, WT5.1d WT1.3 (LC435604)

Candida aaseri 1-3.1a, 1-8W.2a ,1-3W.8a 1-3.1 (LC435605)

Candida insectorum 1-3W.5.3a, NSK3-1c, NSK12-1c, 
NSK17-3c, MTT3.1.4f

NSK12-1 (LC435606)

Kodamaea Kodamaea ohmeri 1-6.3a, BW4.1e, BW5.4e, MTS4.4f BW5.4 (LC435607)

Clavispora Candida intermedia 1-12.1a, 1-2W.1a 1-12.1 (LC435608)

Candida aff. ecuadorensis NSK10-1c NSK10-1 (LC259007)

Metahyphopichia Metahyphopichia lao�ca 11-2.5b, 11-2W.4b 11-2.5 (LC435609)

Nakazawaea Candida nonsorbophila BW4.5.2e BW4.5.2 (LC435611)

Kluyveromyces Kluyveromyces siamensis 1-3.3a, 11-2.2b, 11-3.1b, 11-6.1.1b, 
11-3W.2b, NWK8-1c, WW2.1d, 
WS2.1d,  WS3.2d, WS6.1d, WS7.5d, 
BS1.1e, BS5.1e, BS9.3e, BW4.5.1e, 
BW6.4e, BS8.3e, NSP1-1g, NSP2-1g, 
NSP6-1g, NSP8-1g, NSP9-1g, 
NSP11-2g, NSP12-1g, NSP14-1g, 
NSP15-1g, NSP16-3g, NSP18-1g, 
NSP19-1g, NSP20-2g, NSP21-1g, 
NSP22-3g, NSP24-1g, NWP5-2g, 
NWP7-1g, NSB1-1h, NSB2-1h, 
NSB3-1h, NSB6-2h, NSB8-1h, 
NWB6-4h, 

NSP14-1 (LC435612)

Kluyveromyces aestuarii NSB1-2h, NSB2-2h, NSB9-1h, 
NSB10-1h

NSB1-2 (LC435613)

Pichia Pichia kudriavzevii NWB4-1h, NWB5-1h, NWB6-1h NWB5-1 (LC435614)

Candida pseudolambica 1-4.3a, 11-4.1b, 11-7.2b, WS7.3d, 
WW3.1d, MTW8.1f

1-4.3 (LC435615)

Candida thaimueangensis 1-3W.6.3a, 1-7W.8a, 1-8W.1a, 11-
6.1.2b, NSK3-2c, NSK14-1c, NWK4-
2c, BW9.3e, MTW6.1.1f,  
NSP16-1g, NSP20-1g, NSP22-1g, 
NWP2-1g, NWP4-1g, NWP5-1g, 
NWP7-2g, NWP8-1g, NWP10-1g, 
NSP11-3g, NSP15-2g, NSP24-2g, 
NWB1-1h, NWB2-2h

NWP2-1 (LC435616)

Pichia (con�nued) Candida aff. californica BW6.1e, MTT3.2f, MTW10.3f MTT3.2 (LC435617)

Pichia chibodasensis BW6.8e, MTT3.1f MTT3.1 (LC435618)

Pichia occidentalis 1-7W.2a 1-7W.2 (LC435619)

Pichia sporocuriosa 1-3W.2a 1-3W.2 (LC435620)

Ogataea Candida sithepensis MTW10.4f MTW10.4
(LC435621)

Candida cylindracea 1-6.9a,  MTS1.1.2f MTS1.1.2
(LC435622)

Ambrosiozyma Ambrosiozyma monospora NWK2-3c NWK2-3 (LC435623)

Candida Candida aff. sorboxylosa 1-6.6a 1-6.6 (LC435624)

Candida silvanorum 11-18.2b, 11-14.2b 11-18.2 (LC435610)

Candida aff. silvanorum 11-14.2b, 11-15.8b 11-14.2 (LC435625)

Myxomycota

Myxomycocetes

Prototheca Prototheca aff. wickerhamii NSP10-2g NSP10-2 (LC435626)

Sampling sites: aRBR, bMFDS no. 11, cMFDS no. 7, dMFDS no. 2 , eMFDS no. 4, fMFDS no. 45, gPNFP, hMFDS no. 6.
Sources: S (soil), W (water), D (decayed biological matter)
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Sequencing of the 26S rRNA gene (D1/D2 domain)

The 26S rRNA gene at the D1/D2 domain (LSU D1/D2 
domain) was PCR amplified using the NL1 (5′-GCA TAT 
CAA TAA GCG GAG GAA AAG -3′) and NL4 (5′-GGT CCG 
TGT TTC A AGA CGG -3′) primers (O’Donnell and Gray 
1995). The PCR was performed in a 20 µl reaction vol-
ume containing 2 µl DNA template, 0.4 µl of each primer 
(10 pmol/µl), 10 µl 2 × Go Tag green and 7.2 µl distilled 
water, and was thermocycled at 94 °C for 3 min, followed 
by 36 cycles of 94 °C, 52 °C and 72 °C, each for 30 s, and 
then a final 72 °C for 5 min. The PCR product was purified 
by washing with sterile deionized water, filtered through 
a MinElute® multi-well filter plate (QIAGEN sciences, 
U.S.A.) and then used as the DNA template for the thermal 
cycle sequencing reaction. Primers used were NL1, NL4, 
NL3A (5′-GAG ACC GAT AGC GAA CAA G-3′) and NL2A 
(5′-CTT GTT CG CTA TCG GTCTC) (Kurtzman and Robnett 
1998). Cycle sequencing was performed in a 10 µl reaction 
volume using a BigDye® Terminator V3.1 Cycle Sequenc-
ing kit (Applied Biosystems, U.S.A.). Each reaction con-
tained 1–2 µl DNA template and 1.5 µl of the respective 
primer (1 pmol/μl). Samples were thermocycled at 96 °C 
for 10 min, followed by 25 cycles of 96 °C for 10 s, 50 °C 
for 5 s and 60 °C for 4 min, followed by a final 60 °C for 
10 min. The PCR products were purified and sequence ana-
lyzed using an Auto-sequencer ABI Prism 3130xl Genetic 
analyzer (Applied Biosystems, USA) following the manu-
facturer’s instructions.

The DNA sequence was manually edited using the 
BioEdit program version 7.2.5 (Hall 1999) and compared to 
those in the online database available in the NCBI GenBank 
using the BLASTn program.

Biodiversity analysis

Yeast diversity in each sampling sites was analyzed using 
Shannon–Wiener index (H′), H� = −

∑s

i=0
Pi(lnPi) where Pi 

is the proportion of the number of yeast strains in each spe-
cies to the total number of yeast strains in that sampling site 
(Shannon 1948; Spellerberg and Fedor 2003). Yeast species 
evenness in sampling sites was determined using equitability 
(EH), E

H
=

H
�

ln S
, where S is total number of yeast species in 

each sampling site (Pielou 1975). Evenness indices range 
from 0 to 1, where a value close to 1 means there is complete 
evenness among all species in that area (Heip et al. 1998).

Nile red staining

Yeast isolates that were designated as likely to belong to 
genera known to contain oleaginous yeasts, plus the potential 
new species, were grown on modified YM agar (20 × diluted 
nitrogen source) at 30  °C for 5  days. The resultant cells 

were suspended in Nile red solution (50 µg/ml in acetone 
diluted 100 × with 25% (v/v) dimethyl sulfoxide) and incu-
bated at 30 °C for 10 min. The intracellular lipid accu-
mulation was preliminary examined under a fluorescence 
microscope (Olympus BX51, USA) using a U-WNB2 filter 
with excitation and emission wavelengths of 470–490 and 
520 nm, respectively (Greenspan et al. 1985). The known 
oleaginous yeast, Lipomyces starkeyi JCM 5995, was used 
as a positive control.

Analysis of the intracellular lipid content

Nile red stained yeasts that showed an oil droplet bigger 
than 2/3 of the cell size were selected for analysis of their 
intracellular lipid content. One loopful of yeast grown on 
YM agar was transferred into YM broth (50 ml) in a 250-
ml flask and incubated at 30 °C, 200 rpm for 24 h. A 15-ml 
aliquot was then inoculated into YM broth (150 ml) in a 
500-ml flask and incubated at 30 °C, 200 rpm for 48 h. The 
resultant culture was collected by centrifugation (9803×g, 
4 °C, 15 min) and the cell pellet was washed with lipid 
production medium (LPM; modified from Galafassi et al. 
(2012) to contain 50 g/l glucose, 1 g/l yeast extract, 0.05 g/l 
 MgSO4·7H2O, 1 g/l  KH2PO4, 1 g/l  (NH4)2SO4, 0.01 g/l 
NaCl, 0.01 g/l  CaCl2.·2H2O, pH 5.5). The washed cells were 
inoculated into 150 ml LPM in a 500-ml flask and incubated 
at 30 °C, 200 rpm for 6 days. Cells were then harvested by 
centrifugation (as above), washed with distilled water and 
lyophilized. The intracellular lipid level of the lyophilized 
cells was determined as described previously (Folch et al. 
1957). The lyophilized cells (1 g DCW) were suspended 
in 20 ml of 2:1 (v/v) chloroform: methanol, sonicated at 
37 kHz, room temperature for 30 min (Elmasonic, E60H 
model, Germany) and centrifuged at 9803×g, 4  °C for 
40 min. The supernatant was harvested, dried by evapora-
tion at room temperature and the weight of the lipid residue 
was measured.

Analysis of the fatty acid composition

Lipid was extracted and converted to fatty acid methyl esters 
(FAMEs) as reported (Anamnart et al. 1998). In brief, 1 g of 
wet cells was saponified with 0.8 ml of 10% (w/v) potassium 
hydroxide in methanol at 80 °C for 2 h. After cooling down 
to room temperature, 1 ml of petroleum ether was added to 
remove the unsaponified materials in the reaction mixture. 
The obtained aqueous phase was acidified by 0.3 ml of 6N 
hydrochloric acid and extracted with diethyl ether to recover 
the fatty acids. The fatty acid fraction was evaporated to 
dryness under nitrogen gas and derivatized to FAMEs using 
 BF3/MeOH, and then the FAMEs were extracted in hexane 
and further analyzed on a flame ionization detector sys-
tem using gas chromatography (GC; Agilent Technologies 



World Journal of Microbiology and Biotechnology          (2019) 35:108  

1 3

Page 7 of 17   108 

6890N, USA) equipped with an INNOWAX capillary col-
umn (30 m × 0.3 mm, 0.2 μm film thickness) as reported 
(Limsuwatthanathamrong et al. 2012). Helium was used as 
the carrier gas at a flow rate of 2.3 ml/min. The temperature 
program started at 150 °C and was then increased to 180 °C, 
200 °C and 205 °C at a rate of 10 °C/min, 5 °C/min and 
0.5 °C/min, respectively. The temperature was then held at 
205 °C for 2 min before increasing to 250 °C at 5 °C/min 
and maintained for 5 min. The FAMEs were identified by 
comparison with reference standards.

Phenotypic characterization of the oleaginous yeast 
isolates

To confirm the molecular identification results of the iso-
lated oleaginous yeasts, morphological and physiological 
characteristics of the isolated oleaginous yeasts were deter-
mined and then compared to the description of type strains 
in Kurtzman et al. (2011). Cell morphology was observed 
under light microscopy, while the colony morphology, 
including the texture, color, surface, elevation and margin 
were recorded visually. Carbon assimilation tests were con-
ducted using an ID 32 C kit (BioMerieu, France) following 
the manufacturer’s instructions. Formation of pseudomyce-
lium and true mycelium were examined by the Dalmau slide 
culture method at 25 °C for up to 14 days (Kurtzman et al. 
2011).

Determination of lipid accumulation in glucose 
solution

Capability of the isolated oleaginous yeasts to accumulate 
oil in the absence of a nitrogen source was determined (Lin 
et al. 2011). One loopful of oleaginous yeasts grown on YM 
agar was transferred into YM broth (50 ml) in a 250-ml 
flask and incubated at 30 °C, 200 rpm for 24 h. A 15-ml 
aliquot was then inoculated into YM broth (150 ml) in a 
500-ml flask and incubated at 30 °C, 200 rpm for 48 h. The 
cells were then collected by centrifugation (4 °C, 9803×g, 
10 min), washed with sterile distilled water twice, and sus-
pended in 150 ml glucose solution (40 g/l) in a 500-ml flask 
and incubated at 30 °C with agitation at 200 rpm for 60 h. 
Every 12 h, cells (three independent culture flasks) were har-
vested by centrifugation, washed with sterile distilled water 
and lyophilized. The DCW, lipid content (% (w/w, DCW)) 
and lipid yield were determined.

Results

Isolation and molecular identification of yeast 
isolates

A total of 191 yeasts were isolated and categorized by 
PCR (GTG)5 fingerprinting. The obtained (GTG)5 fin-
gerprint patterns were manually grouped into 94 distinct 
patterns. One representative strain from each of the 94 
patterns was then selected for molecular operational 
taxonomic unit (MOTU) identification and species infer-
ence by comparing their LSU D1/D2 domain sequence 
(500–600 bp) with those deposited in the NCBI GenBank 
database using the BLASTn program. Yeast strains with 
six or more nucleotide substitutions (> 1%) were likely 
to be different species, while strains with 0–3 nucleotide 
substitutions were assigned as conspecific or sister species 
(Kurtzman and Robnett 1998). In this study, yeast strains 
with less than 1% nucleotide substitution were assigned as 
the same species, and the isolates with the same (GTG)5 
fingerprint pattern were assumed to be the same. The term 
‘aff.’ (species affinis) was used to indicate a potentially 
new species that affiliated to but not identical to its closest 
known species. As a result, the 191 isolated yeast strains 
were classified to ascomycetous yeasts (156), basidiomy-
cetous yeasts (34) and yeast-like algae (1). From the 156 
yeast strains belonging to the Ascomycota, 147 strains 
were classified to 32 species in 16 genera. Another nine 
strains were assigned as five new species within the gen-
era Wickerhamomyces sp. (two strains), Yamadazyma sp. 
(one strain), Clavispora sp. (one strain), Pichia sp. (three 
strains) and Candida sp. (two strains). Thirty one out of 
the 34 strains belonging to the Basidiomycota were clas-
sified to 12 species in nine genera, while the three remain-
ing strains were assigned as potential new species in the 
genera Sakaguchia, Heterocephalacria and Goffeauzamy. 
One other strain was classified as a potential new species 
in the genus Prototheca, a yeast-like non-photosynthetic 
algae with yeast-like cells and colonies. The number of 
each species of yeasts isolated, including the accession 
number of the LSU D1/D2 domain sequence of each repre-
sentative yeast species submitted to the GenBank database 
are shown in Table 2.

Yeast diversity and community

Andaman Sea coastline

At RBR, a total of 24 yeast strains were isolated from 
20 collected samples. Nineteen and four strains belonged 
to Ascomycota (thirteen species in eight genera) and 
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Basidiomycota (four species in three genera), respectively. 
The remaining basidiomycetous yeast was ascribed as new 
species closely related to Heterophalacria arrabidensis 
with 2.44% nucleotide substitutions. The most frequently 
isolated species were Candida aaseri and C. thaimuen-
gensis with a fairly even distribution. The species isolated 
only at this site were Candida aaseri, C. intermedia, C. 
sorboxylosa, Pichia occidentalis, P. sporocuriosa, Rhodo-
torula sphaerocarpa, Suhomyces atakaporum and the new 
species (Tables 2 and 3). The Shannon diversity index (H’) 
and community evenness (EH) of the isolated yeasts were 
2.79 and 0.96, respectively (Table 3).

For MRDS no. 11, 34 yeast strains were isolated from 
23 collected samples. Eighteen strains were ascomycet-
ous yeasts (eight species in six genera) and 13 strains were 
basiodiomycetous yeasts (nine species in five genera). The 
remaining three strains were ascribed as new species closely 
related to Goffeauzyma gilvescens (one strain) and Candida 
silvanorum (two strains) with 8.15% and 12.79% nucleotide 
substitutions, respectively. The most frequently isolated spe-
cies were Kluyveromyces siamensis and Schwanniomyces 
vanrijiae. The species isolated at this site only were Can-
dida maltose, C. silvanorum, Hannaella phetchabunensis, 
Kwoniella dejecticola, Metahyphopichia laotica, Naganishia 
liquefaciens, Nag. albida, Rhodotorula toruloides, R. muci-
laginosa, Schwanniomyces vanrijiae and the two new spe-
cies (Tables 2 and 3). The H’ and EH of the isolated yeasts 
were 2.83 and 0.96, respectively (Table 3).

Gulf of Thailand

At MRDS no. 7, 16 ascomycetous yeasts (six species in 
five genera) plus two new species closely related to Can-
dida quercuum (two strains) and Candida ecuadorensis 
(one strain) with 5.13% and 6.78% nucleotide substitutions, 
respectively, were isolated from 25 collected samples. 
Candida tropicalis was the most prevalent species, while 
Ambrosiozyma monospora, Yamadazyma mexicana and the 
two new species were unique species to this site (Tables 2 
and 3). The H’ and EH of the isolated yeasts were 1.81 and 
0.87, respectively (Table 3).

For MRDS no. 2, 12 yeast strains including four species 
in four genera of Ascomycota (11 strains) and one species of 
Basidiomycota (one strain) were isolated from 22 collected 
samples. Candida amphicis was only isolated from this site, 
while Kluyveromyces siamensis was by far the most common 
species isolated (Tables 2 and 3). The H’ and EH of the yeast 
isolated were 1.47 and 0.91, respectively (Table 3).

For MRDS no. 4, 29 yeast strains were isolated from the 
26 collected samples and contained nine species in seven 
genera of Ascomycota (18 strains) and three species in three 
genera of Basidiomycota (10 strains) plus one new species 
closely related to Candida californica with 2.23% nucleotide 
substitutions. Kluyveromyces siamensis and Rhodotorula 
paludigena were the most prevalent species. Candida non-
sorbophila, C. orthopsilosis, Meyerozyma guilliermondii, 
Pseudozyma huberensis and Schwanniomyces polymorphus 
were unique species to this site (Tables 2 and 3). The H’ and 
EH of the isolated yeasts were 2.27 and 0.89, respectively 
(Table 3).

Seventeen yeasts isolated from 25 samples collected at 
MRDS no. 45 were composed of 11 strains of ascomycetous 
yeasts (nine species in six genera), three strains of basidi-
omycetous yeasts (two species in two genera) plus two new 
species that were closely related to Sakaguchia lamellibra-
chiae (one strain) and Candida californica (two strains) with 
2.44% and 2.22% nucleotide substitutions, respectively. The 
most frequently isolated species was Candida tropicalis. The 
new species (one strain) and Candida sithepensis were only 
isolated at this site (Tables 2 and 3). The H’ and EH of the 
isolated yeasts were 2.48 and 0.97, respectively (Table 3).

At PNFP, 35 yeast strains were isolated from 34 collected 
samples. Thirty four strains were ascribed to five species in 
four genera of Ascomycota plus one new species closely 
related to Prototheca wickerhamii with 9.14% nucleotide 
substitutions. The most common species isolated was 
Kluyveromyces siamensis. In addition to the new species, 
Candida viswanathii and C. andamanensis were unique to 
this site (Tables 2 and 3). The H’ and EH of the isolated 
yeasts were 1.18 and 0.66, respectively (Table 3).

Finally, at MRDS no. 6, 21 yeasts strains were isolated 
from 22 samples and were comprised of 20 strains of 

Table 3  Numbers of samples, yeast strains isolated, yeast species, yeast diversity and community evenness indices of yeasts isolated from the 
eight different mangrove forests

Diversity index Sampling site

RBR MRDS no. 11 MRDS no. 7 MRDS no. 2 MRDS no. 4 MRDS no. 45 PNFP MRDS no. 6

Total number of collected samples 20 23 25 22 26 25 34 22
Total number of yeast strains 24 34 14 12 29 17 35 26
Total number of yeast species (S) 18 19 8 5 13 13 6 8
Shannon–Weiner index (H’) 2.79 2.83 1.81 1.47 2.27 2.48 1.18 1.91
Equitability index (EH) 0.96 0.96 0.87 0.91 0.89 0.97 0.66 0.92
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ascomycetous yeasts (seven species in five genera) plus 
one new species closely related to Yamadazyma mexicana 
with 2.64% nucleotide substitutions. The new species plus 
Wickerhamomyces anomalus, Kluyveromyces aestuarii and 
Pichia kudriavzevii were only isolated from this site, while 
the most common species was Kluyveromyces siamensis 
(Tables 2 and 3). The H’ and EH of the isolated yeast 
were 1.91 and 0.92, respectively (Table 3). The relative 

abundance of the yeast species among the different sam-
pling sites is shown in Fig. 2.

Nile red staining

Of the 191 isolated yeast strains, 30 were designated to 
belong to a genera that has been reported to contain ole-
aginous yeasts; Rh. paludigena, Rh. sphaerocarpa, Rh. 

Fig. 2  Relative abundance of 
species isolated from each sam-
pling site. RBR (Site A), MRDS 
no.11 (Site B), MRDS no.7 
(Site C), MRDS no. 2 (Site D), 
MRDS no. 4 (Site E), MRDS 
no. 45 (Site F), PNFP (Site G) 
and MRDS no. 6 (Site H)
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toruloides, Rh. mucilaginosa, Sait. podzolica, Pap. fla-
vescens, Pap. laurentii, Nag. liquefaciens, Nag. albida, 
Kwoniella dejecticola and Debaryomyces nepalensis (Li 
et al. 2008; Rossi et al. 2009; Ageitos et al. 2011; Kurtz-
man et al. 2011; Sitepu et al. 2012). These 30 yeast strains 
plus the 13 strains ascribed as potential new species were 
selected for preliminary determination of their intracel-
lular lipid accumulation by Nile red staining. Of these 
43 selected yeast strains, 11 (Rh. sphaerocarpa 11-14.4, 
Rh. paludigena BW7.3, Rh. paludigena 11-14.7, Rh. 

paludigena MTW11.1, Rh. paludigena BW1.3, Rh. palu-
digena BW8.1, Rh. paludigena WW1.2, Sait. podzolica 
11-11.3.1, Pap. laurentii MTT4.1, Prototheca sp. NSP10-2 
and Debaromyces nepalensis NSB6-1) showed an oil drop-
let bigger than 2/3 of the cell size and so were selected 
for further analysis of their lipid content. The oil droplet 
stained with Nile red of Rh. sphaerocarpa 11-14.4, Sait. 
podzolica 11-11.3.1 and Lipomyces starkeyi JCM 5995 
(positive control) are showed in Fig. 3.

Fig. 3  Nile red staining of a 
Rhodotorula sphaerocarpa 
11-14.4, b  Saitozyma podzolica 
11-11-3.1 and c Lipomyces 
starkeyi JCM 5995 grown on 
modified YM agar (20 × diluted 
nitrogen source) at 30 °C for 
5 days. Bright field (left) and 
fluorescent (right) images at 
× 100 magnification. Scale 
bar = 10 μm. Each image is a 
representative of at least three 
such fields of view per sample 
and two independent samples
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Analysis of lipid accumulation

Analysis of the intracellular lipid content of the 11 selected 
yeast strains revealed that Rh. sphaerocarpa 11-14.4 and 
Sait. podzolica 11-11.3.1 had an intracellular lipid con-
tent in excess of 20% (w/w, DCW), at 27.3 ± 0.006 and 
24.0 ± 0.010% (w/w, DCW), respectively, and so were des-
ignated as oleaginous strains (Fig. 4) and selected for fur-
ther fatty acid composition analysis. Of interest, both these 
oleaginous strains (Rh. sphaerocarpa 11-14.4 and Sait. pod-
zolica 11-11.3.1) were isolated from the same site (MRDS 
no. 11 (Ranong province) on the Andaman Sea coastline).

Fatty acid composition

The fatty acid composition of the two oleaginous strains is 
presented in Table 4. The major fatty acids were oleic, steric, 
palmitic and linoleic acids. The oil from Rh. sphaerocarpa 
11-14.4 was comprised of oleic, palmitic and linoleic acids 

at 55.7, 18.9 and 12.4%, respectively, while myristic, lino-
lenic and palmitoleic acids were present in lesser amounts. 
For Sait. podzolica 11-11.3.1, the three main fatty acids were 
steric (28.7%), oleic (28.7%) and palmitic (25.9%) acids, 
with linoleic and myristic acids as minor and trace amounts, 
respectively.

Phenotypic characteristics of the oleaginous yeast 
isolates

Morphological and physiological characteristics of the 
oleaginous strains, Rh. sphaerocarpa 11-14.4 and Sait. 
podzolica 11-11-3, were the same as their type strains, Rh. 
sphaerocarpum  CBS5939T and Sait. podzolicus CBS  6819 T, 
respectively. The Rh. sphaerocarpa 11-14.4 and Sait. pod-
zolica 11-11-3 were deposited in the Microbe Division/
Japan Collection of Microorganisms, RIKEN BioResource 
Center, Tsukuba, Japan under numbers JCM 32,652 and 
JCM32653, respectively.

Lipid accumulation of the oleaginous yeasts 
in glucose solution

The Rh. sphaerocarpa 11-14.4 suspended in 40 g/l glucose 
solution had the highest lipid content at 32.1% (w/w, DCW) 
and lipid yield (3.04 g/l) at 48 h, while the cell biomass 
was highest (14.1 g/l) at 36 h (Fig. 5a). For Sait. podzol-
ica 11-11.3.1 under the same conditions, the highest lipid 
content, lipid yield and cell biomass 25.8% (w/w DCW), 
3.46 g/l and 13.40 g/l, respectively, were all found at 36 h 
(Fig. 5b).

Discussion

Based on the isolation condition performed in this study, 
ascomycetous yeasts were dominant and were found at all 
the sampling sites, whereas basidiomycetous yeasts were 
less prevalent and were not found at three sites (MRDS no.7, 
PNFP and MRDS no.6). Chi et al. (2012) used YPD as the 
isolation medium at 25 °C reported that ascomycetes yeasts 
were the most abundant yeasts in mangrove ecosystems 

Fig. 4  Intracellular lipid accumulation of the 11 yeast strains having 
an oil droplet bigger than 2/3 of their cell size. (1) Rh. sphaerocarpa 
11-14.4 (2) Rh. paludigena BW7.3 (3) Rh. paludigena 11-14.7 (4) Rh. 
paludigena MTW11.1 (5) Rh. paludigena BW1.3 (6) Rh. paludigena 
BW8.1 (7) Rh. paludigena WW1.2 (8) Sait. podzolica 11-11.3.1 (9) 
Pap. laurentii MTT4.1 (10) Prototheca sp. NSP10-2 (11) Debaromy-
ces nepalensis NSB6-1 and (control) Lipomyces starkeyi JCM 5995. 
Data are shown as the mean ± 1SD, derived from three independent 
trials

Table 4  Relative fatty acid content of the two oleaginous yeasts cultivated in lipid production medium (LPM)

ND not determined (the peak was not detected or the peak area was too small to determine)
Data are shown as the mean ± 1SD, derived from three replications

Strains Relative content of fatty acids (% (w/w))

Myristic
C14:0

Palmitic
C16:0

Palmitoleic
C16:1

Stearic
C18:0

Oleic
C18:1 n9

Linoleic
C18:2 n6

Linolenic
C18:3 n3

Others

Rh. sphaerocarpa 11-14.4 1.17 ± 0.19 18.86 ± 0.58 0.68 ± 0.25 5.69 ± 0.40 55.68 ± 2.29 12.37 ± 1.01 1.15 ± 0.32 4.40
Sait. podzolica 11-11.3.1 0.48 ± 0.06 25.91 ± 1.32 ND 29.86 ± 1.95 28.69 ± 1.19 7.33 ± 0.45 ND 7.74
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in China, where they represented 95.2% of the 269 yeasts 
isolated from the sediment, water and various plant parts. 
Culture-independent studies on fungal diversity in mangrove 
forests of New Caledonia revealed that ascomycetes yeasts 
were dominant, and comprised 82% of the sequence reads 
(Arfi et al. 2012). The distribution and population of yeasts 
were depended on the type and concentration of organic 
materials (Kutty and Philip 2008).

Among the 44 known species isolated in this study, 33 
species have been reported from a mangrove environment 
(Araujo et al. 1995; Fell et al. 2011; Chi et al. 2012; Kunthi-
phun et al. 2018). Many of these yeast species were likely to 
have been introduced from terrestrial environments and the 
marine water. Terrestrial and human-associated yeasts are 
introduced into mangrove forests by rain, rivers and human 
activity, while marine yeasts can influx into this convergence 
area from marine waters by tidal action, natural drainage and 
human activities (Kutty and Philip 2008; Fell 2012; Libkind 
et al. 2017; Hagler et al. 2017).

The most prevalent yeast species isolated in this study 
was Kluyveromyces siamensis (21.5%) followed by Can-
dida thaimueangensis (12.0%) and Candida tropicalis 
(11.5%), while the remaining species were represented 
by only 1–6 isolated strains (0.5–3.1%). Kluyveromyces 
siamensis was the most frequently isolated species (5/8 
sampling sites; MRDS no. 11, MRDS no. 2, MRDS no. 

4, PNFP and MRDS no. 6). This species was first isolated 
from mangrove water in Thailand (Am-In et al. 2008) 
and then subsequently reported from mangrove forests in 
China (Chi et al. 2012) and Thailand (Kunthiphun et al. 
2018). The high prevalence of occurrence of K. siamensis 
in this study may suggest that mangroves are its natural 
habitat.

Candida thaimueangensis was described by Limtong 
et al. (2007) from mangrove water in Thailand and then in 
mangroves in the USA (Fell et al. 2011), China (Chi et al. 
2012) and Thailand (Kunthiphun et al. 2018). However, 
Bautista-Gallego et al. (2011) reported finding C. thaim-
ueangensis in fermented olives in Spain. Nevertheless, the 
high prevalence of occurrence of C. thaimueangensis in this 
study of Thai mangroves could suggest that mangroves are 
its primary habitat.

Candida tropicalis, a pathogenic yeast of human and 
marine invertebrates (Moore and Strom 2003; Wang et al. 
2007), was the most widely distributed species, being iso-
lated from all the sampling sites in this survey. Moreover, 
C. tropicalis was reported to be the most typical yeast spe-
cies in mangroves (Hagler et al. 2017) and was found in all 
mangrove ecosystems surveyed in China (Chi et al. 2012). 
However, this species is widely distributed, being isolated 
from clinical samples and considered as a human-associated 
species but is also common in a variety of natural sources, 
such as plants, fruits, flower, soil, water and food products 
(Kvasnikov et al. 1975; Lachance et al. 2011). Thus, the 
ecological association of this species is hard to ascertain. 
Other opportunistic pathogen yeast species found in this 
survey were C. viswanathii, C. orthopsilosis, C. aaseri, C. 
intermedia, Wickerhamomyces anomalus, Meyerozyma guil-
liermondii and Pichia kudriavzevii. They are often observed 
in feces of warm-blooded animals. However, there are few 
mammals in mangroves but lots of birds so a fecal origin 
from birds for such species is very likely.

Kluveromyces aestuarii is marine adapted species which 
typically found in mangroves habitat (Kutty and Philip 
2008; Fell 2012; Hagler et al. 2017). K. aestuarii was first 
described by Fell (1961) from estuaries in Florida (USA) 
and subsequently in mangroves in Brazil (Araujo et al. 1995; 
Araujo and Hagler 2011) China (Chi et al. 2012) and Thai-
land (Kunthiphun et al. 2018). It was found in detritus feed-
ing crabs and shipworms (mollusk) (Araujo et al. 1995). 
Kluveromyces aestuarii has been used as an indicator species 
for natural well-preserved mangrove ecosystems (Araujo and 
Hagler 2011). In this study, K. aestuarii was only isolated 
from one site, at MRDS no.6, located in Bang Khunsai, 
which contains the largest cockle breeding and cultivating 
grounds in Thailand (Pumijumnong 2014). Accordingly, the 
occurrence of K. aestuarii at MRDS no.6 may suggest that 
this site is situated in a good practice mangrove community, 
or it may simply reflect its proximity to the large cockle bed.

Fig. 5  Lipid accumulation in glucose solution of a Rh. sphaero-
carpa 11-14.4 and b Sait. podzolica 11-11.3.1. Symbols used 
are: lipid content (filled circle), lipid yield (filled square) and dry 
cell weight (DCW) (filled triangle). The data are displayed as the 
mean ± SD, and are derived from triplicate experiments
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Rhodotorula paludigena and Rh. sphaerocarpa are fre-
quently found in marine habitats but not exclusively. Rh. 
paludigena was found in plant nectars (Canto et al. 2017) 
and Rh. Sphaerocarpa was found in freshwater habitats 
(Brandão et al. 2017). The two remaining Rhodotorula spe-
cies observed in this study, namely Rh. toruloides and Rh. 
mucilaginosa, are found in a wide range of natural habi-
tats such as phyllophane (Khunnamwong et al. 2018) soil, 
decayed plants (Sampaio 2011) and marine habitats (Kurtz-
man et al. 2011).

Heavy rain with enhanced river flow and floods can wash 
out terrestrial and freshwater microbial populations and 
carry them to mangrove forests (Araujo et al. 1998). In this 
study, four yeast species that are commonly found in soil 
(Saitozyma podzolica, Candida sithepensis, Pichia terricola 
and P. chibodoensis) were isolated. And three strains of the 
Sait. podzolica isolated were from different kind of samples, 
one strain from water at RBR and the other two strains from 
soil and decaying moss at MRDS no. 11. Saitozyma pod-
zolica has previously been reported as a typical soil-borne 
yeast, since it is frequently isolated from various kinds of 
soil, such as podzolic and sod-podzolic soils in the taiga 
zone (Babjeva and Rheshetova. 1975), peat soil (Golubev 
1991), spruce forest soil (Yurkov et al. 2012a) and forest and 
grassland soils (Yurkov et al. 2012b). Moreover, Sait. pod-
zolica has been reported to occur in other habitats that con-
tained high organic matter and high moisture content, such 
as rotten wood in a beech forest (Middelhoven et al. 2006), 
decayed biomaterial in a mangrove forest (Kunthiphun et al. 
2018), litters from the temperate forests (Mašínová et al. 
2017) and from the spruce frorest (Štursová et al. 2012), 
Sphagnum moss (Kachalkin et al. 2008), and water from 
tropical lake (Brandão et al. 2017). The oil from the oleagi-
nous Sait. podzolica CPOH4, isolated from peat bog soil in 
the black forest of Germany, had a fatty acid profile suitable 
for biodiesel production (Schulze et al. 2014).

The highest diversity of yeasts was found at MRDS no. 
11 (11 genera and 17 species) followed by RBR (10 genera 
and 16 species), which are both located in Ranong province 
on the Andaman Sea coastline. Shannon diversity index (H’) 
of MRDS no. 11 and RBR were 2.83 and 2.79, respectively. 
Mangrove forests in the Ranong province were the least 
invaded by human activities compared to the other provinces 
in this study (Department of Marine and Coastal Resources 
2014). The RBR has been declared a UNESCO Biosphere 
Reserve area (Pumijumnong 2014). The MRDS no. 11 and 
RBR are mature mangrove forests (Pumijumnong 2014) 
which have Rhizophora apiculata as their dominant plant 
species (Mangrove Conservation Office 2018). The R. apicu-
lata is the highest biomass-mangrove plant species (Meepol 
2010). Carbon sequestration in the MRDS no. 11 and RBR 
was higher than the other surveyed mangrove forests (Man-
grove Conservation Office 2018). So they are potentially 

richer in nutrients for yeasts. Additionally, Candida tropica-
lis was the only human-associated species isolated at MRDS 
no. 11. This low level of human-associated yeast species 
indicates the lower level of human influence (Hagler et al. 
2017; Libkind et al. 2017).

The MRDS2 and PNFP sites, located in Chanthaburi and 
Prachuap Khiri Khan provinces, respectively, have the low-
est yeast diversity. More than 50% of the mangrove area 
in these provinces had been invaded for agriculture and 
aquaculture (Department of Marine and Coastal Resources 
2014). The distribution of yeasts is influenced by the type 
and concentration of available nutrients (Kutty and Philip 
2008), plant vegetation (Yurkov et al. 2012b; Hagler et al. 
2017) and anthropogenic activities (Yurkov et al. 2012b; 
Yurkov 2017).

Among the 30 yeast strains designated to belong to a 
genera that has been reported to contain oleaginous yeast 
species plus the 13 strains ascribed as potential new species, 
only two strains (6.67%; Rh. sphaerocarpa 11-14.4 and Sait. 
podzolica 11-11-3.1) were found to be oleaginous yeasts. 
This result confirmed that the oleaginicity was species and 
genus independent. Interestingly, both of them were isolated 
from the same site (MRDS no. 11, Andaman Sea coastline), 
where there was the highest yeast diversity and so the poten-
tial chance to isolate such. Screening of oleaginous yeast 
from yeasts inherent in genus reported to contain oleaginous 
yeast provided the chance of finding more oleaginous yeast 
(Sitepu et al. 2013).

The Rh. sphaerocarpa 11-14.4 had an intracellular lipid 
content of 27% (w/w, DCW). Only 5% of oleaginous yeasts 
have been reported to accumulate intracellular lipid more 
than 25% (w/w, DCW) (Agetios et al. 2011). L. starkeyi 
(Angerbauer et al. 2008), Rhodotorula glutinis (Beopoulos 
et al. 2009) and Rhodotorula toruloides (Zhao et al. 2008) 
were reported to accumulate oil up to 70% (w/w, DCW). 
The lipid content of yeasts is markedly influenced by the 
growth conditions, such as the carbon source, C/N ratio, 
other nutrients, oxygen level, pH and temperature (Sitepu 
et al. 2013). Lipid content of Rhodotorula sphaerocarpa 
UCDFST 68–43 was increased from 25.95 to 36.6% (w/w, 
DCW) when nitrogen was removed from medium (Sitepu 
et al. 2013). Saitozyma podzolica CPOH4 grown in modified 
YM medium containing 50 g/l glucose at 25 °C, 130 rpm 
for 120 h had an intracellular lipid content of 34.6% (w/w, 
DCW) (Schulze et al. 2014). The intracellular lipid content 
of Sait. podzolica DMKU-CPC19 (1) grown in nitrogen-
limited medium at 28 °C, 150 rpm for 120 h was 30.1% 
(w/w, DCW) (Polburee et al. 2015). This makes it impos-
sible to compare our results to others (Ageitos et al. 2011).

The major fatty acids of Rh. sphaerocarpa 11-14.4 oil 
were oleic and palmitic acids, which is similar to vegetable 
oils, such as rapeseed (Hoekman et al. 2012), that are gen-
erally used as a raw material for biodiesel production. The 
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oil from Rh. sphaerocarpa 11-14.4 could, therefore, serve 
as a raw material for biodiesel production. The major fatty 
acids of Sait. podzolica 11-11-3.1 oil were steric, oleic and 
palmitic acids, similar to those of cocoa butter, a high value 
natural fat extracted from cocoa beans (Zarringhalami et al. 
2012). Cocoa butter has several applications in the food, 
medicine and cosmetic industries, such as providing the tex-
ture and structure of chocolate (Wang and Maleky 2018), 
increasing the HDL cholesterol and improvement of UV-
induced erythema resistance (Marsu et al. 2004; Heinrich 
et al. 2006) and inhibition of lipid peroxidation (Marsu et al. 
2004)). Cocoa butter like-lipids (CBLs) have been reported 
to be accumulated in several oleaginous yeasts, such as 
Cutaneotrichosporon (Cu.) curvatus ATCC 2059 (Hassan 
et al. 1994), Yarrowia lipolytica LGAM S(7)1 (Papanikolaou 
et al. 2001) and Yarrowia lipolytica ACA-DC 50109 (Papan-
ikolaou et al. 2003) and Cu. oleaginosus DSM11815 (Wei 
et al. 2017), while Rh. toluroids Y4 produced CBLs under 
sulfate-limited conditions (Wu et al. 2011). The fatty acid 
composition and profile of the yeast oil depends on the cul-
ture medium and condition (Sitepu et al. 2014). The oil of 
Sait. podzplica CPOH4 grown in medium containing glu-
cose as the sole carbon source had oleic (59.4%) and pal-
mitic (18.4%) acids as the major fatty acids (Schulze et al. 
2014), which is different from that for Sait. podzolica 11-11-
3.1 in this study.

When grown in LPM medium, Rh. sphaerocarpa 11-14.4 
and Sait. podzolica 11-11.3.1 had a lipid content of 27.3 and 
24% (w/w, DCW), respectively, after 6 days. But when sus-
pended in glucose solution, the lipid content of Rh. sphaero-
carpa 11-14.4 and Sait. podzolica 11-11.3.1 increased to 
32.1 and 25.8% (w/w, DCW), respectively, after 48 h and 
36 h, respectively. This indicated that the cell growth and 
lipid accumulation of Rh. sphaerocarpa 11-14.4 and Sait. 
podzolica 11-11.3.1 could occur separately. This characteris-
tic makes the time to reach the maximum lipid content level 
shorter. Likewise, the cell propagation and lipid accumula-
tion of Lipomyces starkeyi AS 2.1560 has also been reported 
to be temporally separated (Lin et al. 2011).

Conclusions

Ascomycetous yeasts (thirty-two species in sixteen genera), 
Basidomycetous yeasts (twelve species in nine genera), and 
13 potential new species were distributed in the 8 mangrove 
forests across 4 different coastlines of Thailand. Occurrence 
frequency of oleaginous yeast was 3.82% (two out of one 
hundred ninety one yeast isolates). Oil of the Rhodotorula 
sphaerocarpa 11-14.4 had oleic acid and palmitic acid as 
major fatty acids and so it was suitable to be raw material for 
biodiesel and biolubricant productions. Oil of the Saitozyma 

podzolica 11-11.3.1 was similar to cocoa butter used in food 
industry in that it contained high saturated fatty acids.
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