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Abstract: Ultraviolet-B (UVB) exposure is one of the primary extrinsic factors causing skin photoaging.
It stimulates inflammatory responses and arrests the cell cycle. Matrix metalloproteinase-1 (MMP-1)
secreted by keratinocytes is one of the important extracellular matrixes to attenuate UVB-induced skin
aging via collagen degradation. Curcuma aromatica (CA) and Curcuma comosa (CC), the herbaceous
plants in the Zingiberaceae family, are commonly used in Thai traditional women’s medicines. The
present work was aimed to investigate the potential of the CA and CC extracts and their isolated
compounds to attenuate UVB-induced MMP-1 and cell cycle arrest in HaCaT keratinocytes. Total
phenolic contents and antioxidant capacities of the extracts were determined. CC extract contains
more phenolic components and provides more potent antioxidant activities than CA extract. HaCaTs
were pretreated with the extracts or their isolated constituents 1–4 for 24 h and then repeatedly
exposed to UVB at 100 mJ/cm2 10 times. Both extracts and compounds 1–4 effectively reduce UVB-
induced MMP-1 levels in HaCaT cells and restore cell cycle arrest. This is the first report on the
potential of CA and CC extracts in reducing UVB-induced MMP-1 expression and regulating cell
proliferation in HaCaT cells. Thus, CA and CC extracts might be used as alternative natural agents to
prevent UVB-induced skin photoaging.

Keywords: Curcuma aromatica; Curcuma comosa; Zingiberaceae; sesquiterpenoids; diarylheptanoids;
ultraviolet-B; matrix metalloproteinase-1; skin photoaging

1. Introduction

Skin aging is a complicated biological process affected by both intrinsic and extrinsic
influences. Intrinsic factors for example genetics, cellular metabolism, hormone, and
metabolic processes, are considered to be the root cause of skin aging. Up to the age of
50, intrinsic changes occurred in people aged skin represents generalized atrophy with
minimal structural changes resulting in slow deterioration. In contrast, UV exposure, one
of the most well-known extrinsic factors, may influentially cause the physical damage to
the skin responsible for skin photoaging [1–4]. The three types of UV radiation including
UVA (320–400 nm), UVB (290–320 nm) and UVC (100–290 nm) can be harmful to human
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beings. However, the latter group does not reach the skin, since it is filtered by atmospheric
ozone [5]. Although long-wavelength UVA radiation is considered to penetrate the skin
reaching the deeper dermal layers, short-wavelength UVB exposure with more energy
radiation is principally absorbed by the epidermis layer, which contains the most abundant
keratinocyte cells [6,7]. UVB is responsible for the majority of UV radiation that directly
penetrates the skin, which causes skin pigmentation and wrinkles, as well as inducing
the synthesis of activator protein-1 (AP-1), activating nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), generating reactive oxygen species (ROS) on cell
surface receptors, such mitogen-activated kinases (MAPK) stimulating the induction and
also the expression of matrix metalloproteinases (MMPs) [8]. Thus, because of this damage
it is well-established that UVB is more genotoxic than UVA. Matrix metalloproteinases, a
family of matrix metallopeptidases or calcium-dependent zinc-containing endopeptidases,
degrade proteins and enzymes in the extracellular matrix (ECM) [9,10]. MMP-1, commonly
known as a rate-limiting collagenase, is an enzyme that breaks down collagen, the most
common protein in dermal connective tissue. Collagen breakdown and degradation are
hallmarks of photoaging, so an increase in MMP-1 expression or activity is an indication of
UV-induced skin damage [11–14].

Curcuma aromatica Salisb. (CA) belongs to the Zingiberaceae family, which is widely
distributed in China, Japan, and southeastern Asia [15]. The rhizomes of CA are commonly
used in oriental traditional medicines for tonic, carminative purposes, and externally in com-
binations with astringents, bitters, aromatics to treat bruises, skin eruptions, and infections,
and to improve complexion, promoting blood circulation to eliminate blood stasis [16].
They have also been reported to possess various pharmacological activities including
wound healing, anti-microbial, anti-angiogenic, anthelmintic, anti-tumor, cytoprotective,
anti-inflammatory and antioxidant activities [17]. The extract of the rhizome of CA has been
found to contain sesquiterpenoids and diterpenoids [18,19]. Curcuma comosa Roxb. (CC) is
a phytoestrogen-producing plant belonging to the Zingiberaceae family [20]. The rhizomes
of CC have been used to treat flatulence and gynecologic diseases, such as premenstrual
syndrome, irregular menstruation, and uterine discomfort. In Southeast Asia, this plant
is used as an active ingredient in a variety of traditional women’s medicines. It possesses
estrogenic-like properties and is commonly used by postmenopausal women [21–23]. Pre-
vious phytochemical investigations of this plant revealed the presence of a rich source
of diarylheptanoids [24]. Moreover, it has also been reported for various pharmacologi-
cal activities including lipid-lowering, anti-adipogenic, bone sparing in ovariectomized
rats, enhancing the expansion of hematopoietic stem cells for treatment of hematological
disorders, antioxidant and anti-inflammatory activities [25–31].

Although CA and CC are known to possess several biological activities, the knowledge
of their skin anti-aging potentials is still ambiguous and no previous studies have been
performed to investigate the ability of CA and CC extracts to preserve against UVB-
induced human HaCaT cells. Therefore, the present study of the effect of CA and CC
extracts together with their isolated constituents on UVB-induced MMP-1 expression,
cell proliferation and cell cycle profile in HaCaT cells can be potentially beneficial to the
application for skin anti-aging products.

2. Materials and Methods
2.1. Reagents and Chemicals

All chemicals and solvents were used as received from Merck (Darmstadt, Germany),
TCI (Tokyo, Japan), or Sigma-Aldrich (St. Louis, MO, USA). 3-(4,5-Dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) (Abcam, Cambridge,
MA, USA), Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco, Waltham, MA, USA),
Penicillin-Streptomycin (Gibco, Waltham, MA, USA), Amphotericin B (Gibco, Waltham,
MA, USA), Trypsin-EDTA (Gibco, Waltham, MA, USA), Fetal Bovine Serum (FBS) (Gibco,
Waltham, MA, USA), Matrix Metalloproteinase-1 (MMP-1) Human ELISA kit (Abcam,
Cambridge, MA, USA) and Muse® Cell Cycle kit (Merck Millipore, Darmstadt, Germany)
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were used. The extraction and isolation solvents were analytical grade and the HPLC
mobile phases were HPLC grade.

2.2. Plant Materials

The rhizomes of Curcuma aromatica were collected from Sawang Daen Din district,
Sakon Nakhon Province, Thailand, and the rhizomes of Curcuma comosa were collected
from Kamphaeng Saen district, Nakhon Pathom Province, Thailand in January 2020. The
plant species were identified by Assoc. Prof. Nopporn Dumrongsiri, Ramkhamhaeng
University. The voucher specimens are deposited at the Faculty of Science, Ramkhamhaeng
University, Thailand (Apichart Suksamrarn, Nos. 095 and 099, respectively).

2.3. Preparation of Plant Extracts

The fresh rhizomes of C. aromatica and C. comosa were separately sliced, air-dried,
milled, and macerated with 95% (v/v) ethanol at room temperature for 72 h. The extraction
procedure for each of the plant materials was repeated five times. The combined solution
was filtered and the solvent was evaporated in vacuo at 40–45 ◦C. The residues were
freeze-dried to remove the remaining solvent and the extracts were kept at −20 ◦C until
further experiments.

2.4. Total Phenolic Content

The total phenolic content of the extract was determined by using Folin–Ciocalteu
assay as previously reported [32].

A volume of 10 µL of the extract was mixed with 10 µL of the Folin–Ciocalteu reagent
and 130 µL of deionized water and was neutralized with 100 µL of 7% (w/v) sodium
carbonate solution. The reaction mixture was incubated in dark at room temperature for
30 min. The absorbance will be determined at the wavelength of 734 nm by a microplate
spectrophotometer (Sunrise, Opfikon, Switzerland). The total phenolic contents are ex-
pressed as gallic acid equivalent per gram of extract (µg GAE/mg dry weight) for the
standard curve.

2.5. Antioxidant Assays

The antioxidant capacities were measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH),
ferric ion reducing antioxidant power (FRAP), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS) and nitric oxide (NO) radical scavenging methods as previously
reported [32].

2.5.1. DPPH Free Radical Scavenging Assay

A solution of 0.2 mM DPPH (150 µL) was incubated with 75 µL of the sample dissolved
in ethanol for 30 min in the dark. The absorbance was recorded against a blank at the
wavelength of 517 nm. L-Ascorbic acid was used as a positive control. The inhibition
percentage was calculated using equation (1) and the capacity to scavenge the DPPH radical
by 50% (IC50) was calculated from the dose–effect curves by linear regression.

% Inhibition = [(Acontrol − Asample)/Acontrol] × 100 (1)

where Asample is the absorbance of the sample and Acontrol is the absorbance of reagent
solution mixed with ethanol (blank).

2.5.2. FRAP Radical Scavenging Assay

Briefly, the solution of 10 mM of 2,4,6-tripyridyl-S-triazine (TPTZ) in 40 mM HCl,
FeCl3·6H2O (20 mM) and acetate buffer (pH 3.6) were mixed in the ratio of 1:1:10 to obtain
the working FRAP reagent. The reaction mixture was incubated at 37 ◦C for 10 min. The
test sample (50 µL) was mixed with 150 µL of working FRAP solution for 10 min at room
temperature. The absorbance of the colored product was measured at the wavelength of
593 nm. L-Ascorbic acid was used as a positive standard. The inhibition percentage was
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calculated using equation (1) and the FRAP activity to scavenge the radical by 50% (IC50)
was calculated from the dose–effect curves by linear regression.

2.5.3. ABTS Radical Scavenging Assay

The stock solutions which are 7 mM ABTS solution and 2.4 mM potassium persulfate
were freshly prepared. These stock solutions were then mixed in equal quantities and
allowing them to react for 16–18 h in the dark. The solution was diluted by mixing 1 mL
ABTS•+ solution with 10 mL ethanol to obtain an absorbance of less than 0.99 ± 0.01 units
at 734 nm. The test sample (15 µL) was allowed to react with 150 µL of the freshly
prepared ABTS•+ solution and the absorbance was taken at 734 nm after 10 min. The ABTS
scavenging capacity of the extract will be compared with those of L-ascorbic acid and
percentage inhibition calculated using equation (1).

2.5.4. NO Radical Scavenging Assay

Briefly, 10 mM sodium nitroprusside (SNP) solution (60 µL) was freshly prepared in
phosphate buffer saline (pH 7.4) and was mixed with 60 µL of the test sample. The mixture
was incubated at room temperature for 120 min. Then, 120 µL of Griess reagent (a mixture of
1% (w/v) sulfanilamide in 2.5% (v/v) H3PO4 and 0.1% (w/v) N-(1-naphthyl)ethylenediamine
dihydrochloride (NED) in 2.5% (v/v) H3PO4) was added to the mixed solution, which
was incubated at room temperature for 10 min. The incubated solution was measured for
absorbance at 550 nm. L-Ascorbic acid was used as a positive control. The percentage of
NO radical scavenging activity in a similar manner of DPPH assay.

2.6. Isolation of Marker Compounds from Crude Extracts

The extract of CA was subjected to silica column chromatography, eluting with n-
hexane, n-hexane:EtOAc, and EtOAc by increasing the more polar solvent to give (–)-
curcumene (1), (–)-xanthorrhizol (2) and germacrone (3) (Figure 1). The spectroscopic (1H
and 13C NMR, 2D NMR, and mass spectra) data were in agreement with their structures
and were consistent with those of the reported values [33–35].
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(–)-Curcumene (1). Colorless oil; α25
D –29.1 (c 3.81, CHCl3); 1H NMR (400 MHz, CDCl3)

δ 7.11 (2H, d, J = 8.4 Hz, H-3, H-5), 7.08 (2H, d, J = 8.4 Hz, H-2, H-6), 5.11 (1H, br t, 7.1 Hz,
H-10), 2.67 (1H, m, H-7), 2.33 (3H, s, CH3-14), 1.88 (2H, m, H-9), 1.68 (3H, br s, CH3-12), 1.60
(2H, m, H-8), 1.54 (3H, br s, CH3-13), 1.23 (3H, d, J = 6.9 Hz, CH3-15); 13C NMR (100 MHz,
CDCl3) δ 144.6 (C-1), 135.0 (C-4), 131.2 (C-11), 128.9 (C-3, C-5), 126.8 (C-2, C-6), 124.5 (C-10),
39.0 (C-7), 38.4 (C-8), 26.1 (C-9), 25.6 (CH3-12), 22.4 (CH3-15), 20.9 (CH3-14), 17.6 (CH3-13);
HR-TOFMS (ES–) m/z 201.1696 (calcd for C15H21, 201.1648).

(–)-Xanthorrhizol (2). Pale yellow oil; α25
D –44.2 (c 2.82, CHCl3); 1H NMR (400 MHz,

CDCl3) δ 7.01 (1H, d, J = 7.6 Hz, H-6), 6.66 (1H, dd, J = 7.6, 1.4 Hz, H-5), 6.59 (1H, d,
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J = 1.4 Hz, H-3), 5.07 (1H, br t, J = 7.1 Hz, H-10), 2.59 (1H, m, H-7), 2.20 (3H, s, CH3-14), 1.86
(2H, m, H-9), 1.66 (3H, br s, CH3-12), 1.57 (2H, m, H-8), 1.52 (3H, br s, CH3-13), 1.18 (3H,
d, J = 6.9 Hz, CH3-15); 13C NMR (100 MHz, CDCl3) δ 153.5 (C-2), 147.2 (C-4), 131.4 (C-11),
130.7 (C-6), 124.4 (C-10), 120.7 (C-1), 119.4 (C-5), 113.5 (C-3), 39.0 (C-7), 38.3 (C-8), 26.1 (C-9),
25.6 (CH3-12), 22.3 (CH3-14), 17.6 (CH3-13), 15.2 (CH3-15); HR-TOFMS (ES–) m/z 217.1594
(calcd for C15H21O, 217.1597).

Germacrone (3). White amorphous solid; 1H NMR (400 MHz, CDCl3) δ 4.95 (1H, br
d, J = 11.0 Hz, H-1), 4.68 (1H, br dd, J = 11.3, 2.7 Hz, H-5), 3.38 (1H, d, J = 10.5 Hz, H-9b),
2.92 (1H, d, J = 10.5 Hz, H-9a), 2.91 (1H, br d, J = 12.5 Hz, H-6b), 2.82 (1H, br dd, J = 12.5,
2.8 Hz, H-6a), 2.32 (1H, partially overlapping signal, H-2b), 2.13 (1H, partially overlapping
signal, H-3b), 2.08 (1H, partially overlapping signal, H-3a), 2.05 (1H, partially overlapping
signal, H-2a), 1.74 (3H, s, CH3-12), 1.69 (3H, s, CH3-13), 1.59 (3H, d, J = 2.7 MHz, CH3-14),
1.41 (3H, br s, CH3-15); 13C NMR (100 MHz, CDCl3) δ 207.8 (C-8), 137.2 (C-11), 134.9 (C-4),
132.6 (C-1), 129.4 (C-10), 126.6 (C-7), 125.3 (C-5), 55.8 (C-9), 38.0 (C-3), 29.2 (C-6), 24.0 (C-2),
22.3 (CH3-13), 19.8 (CH3-12), 16.7 (CH3-14), 15.5 (CH3-15); HR-TOFMS (ES+) m/z 241.1530
(calcd for C15H22ONa, 241.1562).

Column chromatography of the CC extract eluting with the isocratic solvent system of
n-hexane:EtOAc (3:2) gave (3S)-1-(3,4-dihydroxyphenyl)-7-phenyl-(6E)-6-hepten-3-ol (4).
The spectroscopic (1H and 13C NMR, 2D NMR, and mass spectra) data were in agreement
with the structure and were consistent with those of the reported values [24].

(3S)-1-(3,4-Dihydroxyphenyl)-7-phenyl-(6E)-6-hepten-3-ol (4). White amorphous solid;
α24

D –19.9 (c 0.77, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.30 (2H, td, J = 8.5, 1.8 Hz, H-3˝,
H-5˝), 7.26 (2H, dd, J = 8.5, 1.6 Hz, H-2˝, H-6˝), 7.18 (1H, tdd, J = 8.5, 1.8, 1.6 Hz, H-4˝), 6.74
(1H, d, J = 8.1 Hz, H-5’), 6.68 (1H, d, J = 1.9 Hz, H-2’), 6.59 (1H, dd, J = 8.1, 1.9 Hz, H-6’),
6.38 (1H, br d, J = 15.8 Hz, H-7), 6.19 (1H, dt, J = 15.8, 6.9 Hz, H-6), 5.52 (1H, br s, 3’-OH),
5.31 (1H, br s, 4’-OH), 3.68 (1H, m, H-3), 2.65 (1H, m, H-1b), 2.55 (1H, m, H-1a), 2.30 (1H, m,
H-5), 1.73 (1H, m, H-2), 1.63 (1H, m, H-4); 13C NMR (100 MHz, CDCl3) δ 143.5 (C-4’), 141.
7 (C-3’), 137.5 (C-1’), 134.9 (C-1˝), 130.3 (C-7), 130.2 (C-6), 128.5 (C-2˝, C-6˝), 126.9 (C-4˝),
125.9 (C-3˝, C-5˝), 120.6 (C-6), 115.4 (C-2’), 115.3 (C-5’), 71.0 (C-3), 39.0 (C-2), 36.9 (C-4), 31.3
(C-1), 29.2 (C-5); HR-TOFMS (ES+) m/z 321.1469 (calcd for C19H22O3Na, 321.1461).

2.7. Quantification of Marker Compounds in Crude Extracts using High-Performance Liquid
Chromatography-Diode Array (HPLC-DAD)

The purity of isolated marker compounds 1–4 was determined by 1H NMR and HPLC
techniques. The quantity of marker compounds in the extract was determined using Agilent
1200 series HPLC system equipped with a G1311A pump and a G1315B DAD detector
(Agilent Technologies, CA, USA).

For CA, the extract and each of the marker compounds 1–3 were accurately weighed
and separately dissolved in isopropanol, filtered through a 0.22 µm nylon filter and the solu-
tion of each sample was injected into Phenomenex Luna Silica (2) (250 × 4.60 mm × 5 µm)
column (Phenomenex, CA, USA) at a column temperature of 25 ◦C. The mobile phase
consisted of n-hexane (solvent A) and isopropanol (solvent B). The elution program was
optimized as follows: 0.0–6.0 min, 0.5% B, flow rate 1.0 mL/min; 6.0–6.3 min, 0.5% B, flow
rate 1.8 mL/min; 6.3-19.0 min, 1% B, flow rate 1.8 mL/min; 19.0–30.0 min, 0.5% B, flow rate
1.0 mL/min. The injected volume was 50 µL and monitored at 214 nm.

For CC, the extract and marker compound 4 were prepared in a similar manner
to those of the CA extract analysis, except that acetonitrile has been used in place of
isopropanol. The analytical column was a 250 × 4.60 mm × 5 µm Phenomenex Luna
reverse phase C18 column (Phenomenex, CA, USA) at a column temperature of 25 ◦C.
Mobile phase A was 0.5% (v/v) acetic acid in water and mobile phase B was acetonitrile.
The gradient elution program was optimized as follows: 0.0–5.0 min, 70% B; 5.0–10.0 min,
75% B; 10–15.0 min, 80% B; 15.0–25.0 min, 90% B. The analysis was carried out at a constant
flow rate of 1.0 mL min−1. The injected volume was 50 µL and was monitored at 254 nm.
The amount of marker compounds was calculated by using the peak integration of each
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compound using a calibration curve generated from isolated pure marker compounds. All
experiments were performed in triplicate.

2.8. Validation of HPLC Analysis

Validation of HPLC analysis was performed using the purified marker compounds. Cal-
ibration curves were conducted from the peak areas of the standards 1–4 versus their seven
different concentrations in the range of 3.91–250.00 µg/mL (1–3) and 1.95–125.00 µg/mL (4).
The linearity of the calibration curves was evaluated using correlation coefficients (R2). The
limit of detection (LOD) and the limit of quantification (LOQ) were determined as signal-to-
noise (S/N) ratios of 3 and 10, respectively. The precision of the method was determined via
a repeatability test within one day (intra-day) and an intermediate precision over three days
(inter-day). Intra-day analysis was performed by analyzing the same standard solutions at
three different concentrations (7.81, 31.25 and 125.00 µg/mL for compounds 1–3 and 3.91,
15.63 and 62.50 µg/mL for compound 4) in a single day and inter-day analysis was achieved
by analyzing standard solutions at three different concentrations on three consecutive days,
respectively. Precisions are given as relative standard deviations (RSDs) (where % RSD =
(standard deviation / mean) × 100). The accuracy of the method was determined by the
recovery test. Recovery was calculated as follows: % recovery = ((detected concentration −
initial concentration)/spiked concentration) × 100.

2.9. Cell Line and Culture Conditions

The HaCaT cells were purchased from CLS Cell Lines Service GmbH (Eppelheim, Ger-
many). They were maintained in Dulbecco’s modified Eagle’s medium (DMEM) (GIBCO,
Paisley, UK) supplemented with 10% (v/v) fetal bovine serum (GIBCO, Paisley, UK) and
1% (v/v) penicillin/streptomycin (GIBCO, Paisley, UK). Cells were grown at 37 ◦C in a
humidified 5% CO2 atmosphere. When cells (from passages 16 to 25) reached 70-80% con-
fluence, they were trypsinized, planted at different densities according to the parameters
studied, and incubated for 24 h.

2.10. UV Irradiation

The HaCaT cells (5 × 105 cell dish−1) were seeded into a 60 mm Petri dish and were
incubated in cultured media for 24 h. Prior to UVB exposure, cells were washed with PBS.
Cells were exposed to various intensities of UVB (50, 100, 200, and 400 mJ cm−2) under
a thin layer of PBS. Philips TL 20W/01 UVB Narrowband TL lamps with an emission
spectrum between 290 and 315 nm (peak, 310–315 nm) were used as the UVB source. The
UVB source was positioned at 30 cm above the cell culture dishes. Sentry UV meter (model
ST513, New Taipei City, Taiwan) was used to measure UV irradiance. Immediately after
UVB irradiation, PBS was replaced with serum-free media for 24 h. Cell dishes were
then repeatedly UVB-irradiated 10 times. The protocol for UVB irradiation is illustrated
in Figure 2. After 24 h of the last irradiation, the culture media was removed and MTS
solution was added into the culture dishes and further incubated for 4 h. The cell viabilities
were quantified by the absorbance at 493 nm using a microplate spectrophotometer. The
absorbance of the non-UVB-exposed cells was adjusted to 100% viability. Cell morphology
was observed using an inverted microscope.
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2.11. Cell Viability

To determine the effect of non-toxic concentrations of CA and CC extracts, cell viability
was evaluated by MTS assay. The HaCaT cells (2× 104 cells/well) were seeded into 96-well
plates and were maintained until 80% confluency, and the cells were pre-treated with serum-
free medium or serum-free medium containing the extracts for 24 h. The cells were washed
with PBS and irradiated (or non-irradiated for the control group) with UVB under a thin
layer of PBS. After irradiation, the cells were then placed in a fresh serum-free medium and
continuedly incubated for 24 h. After incubation, the culture media was removed and MTS
solution was added into culture plates and further incubated for 4 h. The cell viabilities
were quantified by the absorbance at 493 nm using a microplate spectrophotometer. The
absorbance of the non-UVB-exposed cells was adjusted to 100% viability. Cell morphology
was observed using an inverted microscope.

2.12. Cell Proliferation

To determine the effect of CA and CC extracts and their isolated constituents on
cell proliferation, the HaCaTs were evaluated by trypan blue exclusion assays. Briefly,
the cells were seeded into a 60 mm Petri dish at 5 × 105 cells/dish and then incubated
in a humidified atmosphere (37 ◦C, 5% CO2) for 24 h. Cells were then repeatedly UVB-
irradiated 10 times as described in Figure 2. After 24 h of the last UVB exposure, cells were
trypsinized and stained with 0.4% trypan blue solution (GIBCO, Paisley, UK). Enumeration
of viable cells was carried out under a phase-contrast microscope with a hemocytometer.

2.13. Enzyme-Linked Immunosorbent Assay (ELISA)

The release of MMP-1 in UVB-irradiated HaCaT cells was analyzed by the ELISA
technique. The HaCaT cells (5 × 105 cells/dish) were pre-incubated in a 60 mm Petri dish
for 24 h, and the cells were pre-treated with serum-free medium or serum-free medium
containing the extracts or the isolated compounds for 24 h. Cell dishes were washed with
PBS before UVB exposure (100 mJ/cm2) under a thin layer of PBS. Immediately after UVB
irradiation, the cells were treated with a serum-free medium and further incubated for
another 24 h. Cell dishes were then repeatedly UVB-irradiated 10 times. The protocol
for cell treatment and irradiation is shown in Figure 2. Supernatant from each well was
collected after 24 h of the last irradiation and analyzed for its MMP-1 contents by the
manufacturer’s instructions of the ELISA kit.

2.14. Cell-cycle by Flow Cytometry

The HaCaT cells were maintained and repeatedly UVB-irradiated 10 times as described
in Figure 2. After 24 h of the last UVB-irradiation and the removal of supernatants, the cells
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were washed twice with PBS, fixed and permeabilized with ice-cold 70% (v/v) ethanol, and
washed with PBS. The cultures were then resuspended in Guava cell-cycle reagent. The
cell-cycle analyses were performed using a Guava easyCyte 8HT flow cytometer (Merck
Millipore, Darmstadt, Germany). The percentage of cells in the different stages of the cell
cycle was assessed by a flow cytometer and analyzed with Guava Cell-Cycle software. The
obtained results were expressed as the percentage of cells in the different stages of the cell
cycle in treated cultures compared to that present in the control cultures.

2.15. Statistical Analysis

The results are presented as means ± SD, and statistical analyses were performed
using a Student’s t-test by using GraphPad Prism version 7.00 for Windows software (La
Jolla, CA, USA). p-Values < 0.05 were considered to indicate a statistically significant.

3. Results and Discussion
3.1. Extraction and Isolation

In preliminary screening for anti-photoaging agents, it was found that the ethanolic
extracts of CA and CC exerted cytoprotective activity against UVB irradiation in human
HaCaT keratinocytes by inducing the expression of MMP-1. This result prompts us to
investigate phytochemical constituents from both CA and CC extracts, in order to clarify
their anti-MMP-1 expression.

Briefly, the air-dried powder of the CA and CC rhizomes was extracted by the alcoholic
maceration method. The yield of the ethanolic extract of CA was 10.8% and that of the
CC extract was 9.6%. The chromatographic investigation of the ethanol extract of the
rhizomes of CA led to the isolation of three major compounds, (–)-curcumene (1), (–)-
xanthorrhizol (2) and germacrone (3). Additionally, the investigation of the ethanolic
extract of the CC rhizomes resulted in the isolation of the major diarylheptanoid 4 [24] as
the active constituent. Their structures were identified based on spectroscopic data and
by comparisons with those of the reported values. The purity of isolated compounds 1–4
was more than 95%, determined by 1H NMR and HPLC techniques. The extracts and these
compounds were then used for further experiments.

3.2. Antioxidant Activities of CA and CC Extracts

Oxidative stress is a pathological state, in which the reactive oxygen species (ROS)
lead to oxidative modification of biomacromolecules, tissue injury, and accelerated cellular
aging and death [36]. Excessive UVB exposure is a primary environmental condition that
contributes to the development of skin disorders. Particularly, UVB exposure produces ROS,
which damages DNA. This damage eventually leads to skin inflammation, photoaging,
and photocarcinogenesis. The incident can be prevented by applying anti-oxidative agents
that reduce the damage [37].

The total phenolic contents and IC50 of the antioxidant activities of the ethanol extracts
of CA and CC are shown in Table 1. Total phenolic contents of CA and CC extracts were
determined by using Folin–Ciocalteu method, which was 90.89 and 186.99 µg GAE/mg, re-
spectively. The antioxidant potency of CC extract obtained by NO assay (IC50 0.26 µg/mL)
showed higher potency than those obtained by ABTS (IC50 2.67 µg/mL), DPPH (IC50
21.22 µg/mL) and FRAP (IC50 32.47 µg/mL) assays, respectively, whereas CA extracts indi-
cated antioxidant property against ABTS (IC50 19.17 µg/mL), DPPH (IC50 78.77 µg/mL),
FRAP (IC50 86.85 µg/mL) and NO (IC50 159.90 µg/mL) assays. In cellular metabolism of
the living body, free radical ROS and reactive nitrogen species (RNS) including hydroxyl,
superoxide and nitric oxide radicals and non-free radical species including hydrogen per-
oxide, singlet oxygen and peroxynitrite are present. Various assays are used to investigate
the antioxidant capacity of the tested samples. In general, DPPH and ABTS methods use a
single-electron transfer mechanism to determine the antioxidant capacity of the tested com-
pounds because they are simple and widely used approaches for determining antioxidant
activity. FRAP assay evaluates via the reduction of ferric iron (Fe3+) to ferrous iron (Fe2+)
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mechanism, while NO is another free radical that reacts with superoxide anion radical to
form peroxynitrite, which can effectively detect by using Griess’s reagent [38]. The differ-
ences in the antioxidant properties of both crude extracts were related to their chemical
constituents and phenol concentration that are responsible for the antioxidant potential [39].
The CC extract mainly contains phenolic components, such as diarylheptanoids, which can
play an important role in neutralizing free radical species. This causes the CC extract to
show higher activity than the CA extract that contains a rich source of terpenoids, which are
non-phenolic compounds. However, both CA and CC extracts exhibited less activity than
the reference compound, L-ascorbic acid, which is known to be an outstanding antioxidant.

Table 1. Total phenolic contents and antioxidant activities of CA and CC extracts.

Sample Total Phenolic Contents
(µg GAE/mg)

Antioxidant Activities (IC50, µg/mL)

DPPH ABTS FRAP NO

CA extract 90.89 ± 0.14 78.77 ± 1.02 19.17 ± 0.07 86.85 ± 1.11 159.90 ± 1.04
CC extract 186.99 ± 0.01 21.22 ± 1.01 2.67 ± 1.02 32.47 ± 1.04 0.26 ± 1.04

L-Ascorbic acid 1 - 5.15 ± 1.04 0.86 ± 1.03 2.06 ± 1.56 0.04 ± 1.04

The results were expressed as mean ± standard deviation (SD) of triplicate experiments. (n = 3) 1 L-Ascorbic acid
was used as the positive control.

3.3. Validation and Quantitative Analysis of Marker Compounds by using HPLC

The linearity for compounds (1–4) was established by plotting the peak area (y) versus
the concentration (x) of each analytical marker, as demonstrated by the equations shown
in Table 2. All the standard curves showed good linearity (R2 > 0.999) within the tested
ranges [40]. The LOD and LOQ for all the analytes are summarized in Table 2. To assess
repeatability, the solutions of the same sample were analyzed. The precision was evaluated
on inter-day and intra-day variations by performing three different concentrations with
each triplicated experiment of the standard marker. The RSDs were all less than 2%,
which indicates that the method has good repeatability [41]. The accuracy was studied
by spiking markers in the analytical sample. The percent recovery was found to be in the
range of 95–105%, which remarks that the accuracy of method analysis is acceptable [41].
The established method was identified as a suitable method for quantitative analysis of
these samples.

Table 2. Validation of HPLC analysis of marker compounds of CA (1–3) and CC (4).

Compounds Linearity
Correlation
Coefficient

(R2)

LOD
(µg/mL)

LOQ
(µg/mL)

% RSD

% RecoveryInter-Day
(n = 9)

Intra-Day
(n = 9)

1 y = 91.53x + 427.86 0.9990 1.48 4.72 0.45 ± 0.09 0.63 ± 0.30 98.93 ± 1.06
2 y = 89.04x + 272.38 0.9992 0.89 2.85 1.17 ± 0.16 0.58 ± 0.39 101.79 ± 1.48
3 y = 98.72x + 560.04 0.9992 0.42 1.34 1.30 ± 0.35 0.65 ± 0.10 100.43 ± 0.35
4 y = 174.91x + 165.03 0.9997 0.05 0.15 0.98 ± 0.18 1.53 ± 0.59 99.13 ± 0.60

The letters y and x are peak area and concentration, respectively.

To explicate the quantity of chemical constituents responsible for the anti-MMP-1
activity in the extracts, the sesquiterpenoids 1–3 in the CA extract and the diarylheptanoid
4 in the CC extract were quantified by using HPLC/DAD. The ethanol extract of CA con-
tained compound 1 (192.76 ± 10.59 µg/mg), compound 2 (168.04 ± 15.55 µg/mg) and
compound 3 (40.91 ± 0.85 µg/mg). These sesquiterpenoids are mainly phytochemical con-
stituents in CA extract by our preliminary investigation. In addition, the diarylheptanoid
4 (128.07 ± 16.38 µg mg−1) was also quantified as the active compound of CC ethanolic
extract. The HPLC chromatograms of compounds 1–4 are shown in Figures 3 and 4.
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3.4. Selection of Optimal UVB Dose

To investigate the optimal UVB dose, the HaCaT cells were irradiated with dose-
dependent of UVB at 50, 100, 200, and 400 mJ/cm2. The results showed that most of the
tested UVB doses (50, 100, and 200 mJ/cm2) did not affect HaCaT viability (Figure 5A).
However, the typical morphology of the non-UVB-irradiated group (Figure 5B) partially
changed at the UVB irradiation dose of 200 mJ/cm2 (Figure 5E), whereas a dose of
100 mJ/cm2 or less did not change the morphology of cells (Figure 5C,D). In addition,
the latter maximum dose of 400 mJ/cm2 did injure cells, leading to cell death (Figure 5F).
Therefore, a UVB dose of 100 mJ/cm2 was selected for further experiments.
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Figure 5. Effect of UVB irradiation on HaCaT viability. Cells were irradiated with various UVB
intensities. They were then incubated in a culture medium for 24 h. (A) Cytotoxicity was conducted
by MTS assay of non-UVB-irradiated and UVB-irradiated cells (100% of control). Data are presented
as means ± S.D. Morphologies of (B) non-UVB-irradiated cells or cells irradiated with UVB at a dose
of (C) 50 mJ/cm2, (D) 100 mJ/cm2, (E) 200 mJ/cm2, and (F) 400 mJ/cm2.

3.5. Cytotoxicity of the Extracts to Human HaCat Keratinocytes

To assess the effects of CA and CC extracts on cell viability, the MTS assay, according
to the previous study [42] with some modifications was used in this investigation. The
MTS tetrazolium compound is reduced by viable cells to produce a colored formazan dye
that is soluble in cell culture medium in this colorimetric assay. In metabolically active
cells, NAD(P)H-dependent dehydrogenase enzymes are responsible for this conversion.
A change in the amount of formazan generated in response to an increase or reduction
of viable cells indicates the degree of cytotoxicity. Compared with cells treated with 0.1%
(v/v) DMSO, both extracts did not significantly affect the viability of HaCaT keratinocyte
cells (>80% viability) at the examined concentrations of 0.05–0.50 µg mL−1 for CA and
0.05–1.00 µg/mL for CC after incubation for 24 h. However, the higher concentration of
both extracts showed cytotoxicity against HaCaT cells (Figure 6). Thus, the concentrations
of 0.50 µg/mL for CA and 1.00 µg/mL for CC were chosen for further experiments.
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3.6. Evaluation of the Extracts and Isolated Constituents on Cell Proliferation and MMP-1 after
UVB Irradiation in Human HaCaT Keratinocyte Cells

To test the effects of the CA and CC extracts together with their isolated compounds
on cell proliferation, HaCaT cells were pre-treated with the serum-free medium containing
the tested sample and were then repeatedly UVB-irradiated (100 mJ/cm2 × 10 times). The
cell treatment and irradiation protocol are demonstrated in Figure 2. A concentration of CA
and CC extracts was used based on cytotoxic results (0.50 and 1.00 µg/mL, respectively);
whereas a dose of isolated compounds 1–4 was treated with an equivalent amount in crude
extracts, which was then quantified by the HPLC technique. After 24 h of the tenth UVB-
irradiation, the total number of viable cells was then counted using trypan blue staining and
a hemocytometer. In the UVB-treated control group, cell numbers significantly decreased
compared with the untreated group (Figure 7). Pre-treatment with the CA and CC extracts
and their isolated compounds 1–4 before repeated UVB irradiation markedly enhanced
the cell proliferation compared with the UVB-irradiated control group (1.47–1.95-folds of
control). These results suggested that the CA and CC extracts and their isolated compounds
could prevent UVB-inhibited human keratinocyte cells proliferation.

To investigate the effects of the CA and CC extracts and their isolated compounds
1–4 on the level of MMP-1 in UVB-irradiated human HaCaT keratinocytes cells, the
cells were pre-treated with the tested samples for 24 h before repeated UVB irradia-
tion (100 mJ/cm2 × 10 times) (Figure 8). The amount of MMP-1 secreted into the culture
medium was analyzed. The results showed that the level of MMP-1 secretion dramati-
cally increased in repeatedly UVB-irradiated keratinocytes (control group) compared with
non-irradiated keratinocytes (4.29-fold of non-UVB-irradiated cells), but treatment with
0.5 µg/mL of the CA extract markedly inhibited UV-induced MMP-1 (6.42-fold of control).
Furthermore, the 1.0 µg/mL of CC extract decreased the level of MMP-1 (4.31-fold of
control) (Figure 8). Pre-treatment with the CA and CC extracts and their isolated com-
pounds 1–4 after UVB irradiation decreased the level of MMP-1 produced by keratinocytes
compared with the UVB-irradiated group (8.68 to 18.18-folds of control) (Figure 8). Thus,
it could be concluded that compounds 1–4 play a critical role in human keratinocytes by
preventing the UVB-induced overexpression of MMP-1. Our study on human keratinocyte
cells demonstrated that MMP-1 expression was activated in UVB-irradiated HaCaT cells
and a significant reduction in MMP-1 expression in cells pre-treated with the CA and CC
extracts and their constituents were observed. Therefore, the prevention of UVB-induced
skin damage caused by collagen breakdown could be, at least in the past, attributed to
a reduction in the overexpression of MMP-1. In addition, our finding is consistent with
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other reports demonstrating that (–)-xanthorrhizol (2), isolated from Curcuma xanthorrhiza,
significantly reduced MMP-1 expression in a dose-dependent manner [43], while germa-
crone (3), also isolated from the same plant species, inhibited protein expression levels of
MMP-1, MMP-2, and MMP-3 in human keratinocytes and UVB-induced upregulation of
the mRNA [44]. However, the molecular mechanism by which the CA and CC extracts
reduce MMP-1 expression requires further study.
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Figure 7. Effects of the CA and CC extracts and isolated constituents on cell proliferation by UVB-
induction. Human skin keratinocytes were pre-treated with the tested samples for 24 h before
repeated UVB irradiation (100 mJ/cm2 × 10 times). Cells were harvested for 24 h after the tenth of
UVB irradiation. The percentage of cell proliferation was determined via the trypan blue assay. Data
are presented as the means ± SD. *** p < 0.05, using unpaired Student’s t-test.

3.7. Cell Cycle Arrest of UVB-Exposed Cells to the Extracts and Isolated Constituents

Cell cycle arrest is one of the most typical events that occur during cell development,
which consists of four stages including G1, S, G2, and M phases. The synthesis of enzymes
essential for DNA replication is a hallmark of the G1 phase. DNA is duplicated during the
S phase to form two identical sets of chromosomes. The G2 phase is primarily concerned
with the creation of microtubules, which are necessary during the mitotic phase of cell
division. During the interphase, there is an increase in cell volume (G1, S, and G2 phases).
The parent cell is divided into two daughter cells by nuclear and cytoplasmic divisions and
the production of a new cell membrane during the M phase, which sequentially includes
prophase, metaphase, anaphase, and telophase. The G1/S transition is one of the two key
checkpoints in the cell cycle, with the other occurring at the G2/M transition. It controls
the cell cycle and is responsible for the initiation and completion of DNA replication. DNA
ploidy and protein analyses are commonly used in cell cycle studies after fluorescent
staining or labeled nucleic acid incorporation. The cell-cycle reagent contains the dye
propidium iodide (PI), which could penetrate cell membranes, bind covalently to DNA,
and emit red fluorescence [45–48].
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Figure 8. Effects of the CA and CC extracts and isolated constituents on MMP-1 production by
UVB-induction. Human skin keratinocytes were pre-treated with the tested samples for 24 h before
repeated UVB irradiation (100 mJ/cm2 × 10 times). Cell-free supernatants were collected for ELISA
for 24 h after the tenth irradiation. Data are presented as the means ± SD. *** p < 0.05, using unpaired
Student’s t-test.

To investigate the possibility that the cell cycle was suppressed by the CA and CC
extracts and their constituents 1–4, results from cell cycle disruption, flow cytometric
analyses stained with PI were performed. Cell cycle progression was examined after
24 h of the tenth of 100 mJ/cm2 UVB irradiation of human HaCaT keratinocytes treated
with the CA and CC extracts and isolated compounds 1–4. The histograms generated
were analyzed with InCyte Software for Guava easyCyte HT Systems, to determine the
proportion of cells in G0/G1, S, and G2/M for each sample. The gating histogram and
cell cycle distribution of cell cycle were illustrated in Figure 9A,B. Table 3 presents the
percentages of cells in the cell cycle phases (G0/G1, S, and G2/M). The results revealed
that repeated UVB exposure induces an increase in the percentages of cells in the G0/G1
and S phases. On the other hand, the repeated UVB exposure exhibited a decrease in
the percentages of cells in the G2/M phase at 24 h post-UVB irradiation. Interestingly,
pre-treatment of UVB-exposed cells to the CA and CC extracts resulted in a decrease of
cell populations compared with the UVB-treated control group in the G0/G1 phase (–2.7%
and –1.2% at 24 h after the last UVB irradiation, respectively) and the S phase (–2.8% and
–2.6%, respectively), associated with increases of cells in the G2/M phase (+5.6% and +3.8%,
respectively). In addition, the percentages of the sub-G1 phase were less than 0.2% (data
not shown) the same as the non-UVB-treated group, since both extracts did not induce cell
death at the tested concentration. Furthermore, the isolated constituents of both extracts
also showed the percentages of cell populations in G0/G1, S, and G2/M in a similar trend
with their extracts. It seemed probable that compounds 1–4 play an important protective
role in the CA and CC extracts against UVB-induced cell growth inhibition. As in other
investigations, UVB has been used to perform cell cycle arrest [49]. In this study, the cell
populations in the G0/1 and S phases were significantly increased after UVB irradiation,
indicating cells were arrested at the G0/G1 and S phases. Our results imply that the CA and
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CC extracts, and their isolated constituents 1–4 restored cell cycle arrest to levels similar to
those of the non-UVB irradiated group at low concentrations after 24 h of UVB irradiation,
indicating that the CA and CC extracts and their constituents could rescue UVB-induced
cell cycle arrest. Consequently, their treatment at the tested concentrations did not induce
cell death in HaCaT cells. Therefore, the CA and CC extracts along with their constituents
showed a photoprotective effect against UVB-induced cell growth inhibition. However, the
mechanism of its action is required.
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4. Conclusions 
In conclusion, we demonstrated that C. aromatica and C. comosa extracts, and their 

isolated constituents had photoprotective effects against UVB-induced HaCaT keratino-
cyte cells, which did not induce cell death. They increased cell proliferation, inhibited 
MMP-1 overexpression and restore cell cycle arrest in UVB-irradiated HaCaTs. C. aro-
matica and C. comosa extracts and their isolated constituents may serve as potential candi-
dates for the prevention of skin photoaging. However, further studies are necessary to 
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Figure 9. Cell cycle arrested following CA and CC extracts and isolated compounds treatments for
48 h. 0.1% DMSO was used as a control. The cell cycle was analyzed using flow cytometry. Human
keratinocytes were pre-treated with the tested samples for 24 h. The cells were harvested, stained
with propidium iodide (PI) for 24 h after the tenth UVB irradiation (100 mJ cm−2) and DNA content
was quantified by flow cytometry. (A) Data shows the gating histogram showing the percentage
of cells in the G0/G1, S and G2/M phases of the cell cycle obtained after flow cytometry analysis,
where (1) = non-UVB-treated cells, (2) = UVB-treated cells, (3) = CA extract, (4) = compound 1,
(5) = compound 2, (6) = compound 3, (7) = CC extract and (8) = compound 4. For each sample,
500,000 cells were acquired. (B) Cell cycle distribution pre-treated compounds treatments. Data are
presented as the means ± SD. Asterisks (*) denote significant differences from the UVB-treated group
(p < 0.05).
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Table 3. Cell cycle distribution of the CA and CC extracts and isolated compounds 1–4 treated HaCaT
cells at 24 h after the tenth UVB exposure (100 mJ/cm2).

Sample % of Total Cell Cycle Population in:

G0/G1 S G2/M

Non-UVB-treated cells 59.64 ± 2.01 7.96 ± 0.05 32.05 ± 2.09
UVB-treated cells 64.47 ± 0.79 13.73 ± 0.11 21.17 ± 0.81

CA extract 61.73 ± 1.24 10.93 ± 1.28 26.77 ± 2.52
Compound 1 62.28 ± 0.42 10.03 ± 0.54 27.15 ± 0.81
Compound 2 61.25 ± 0.54 11.34 ± 1.17 26.83 ± 1.29
Compound 3 62.69 ± 0.86 9.76 ± 0.10 26.95 ± 0.96

CC extract 63.31 ± 0.37 11.15 ± 0.56 24.98 ± 0.22
Compound 4 63.35 ± 0.19 10.40 ± 1.29 25.74 ± 2.53

The results were expressed as mean ± standard deviation (SD) of triplicate experiments. (n = 3).

4. Conclusions

In conclusion, we demonstrated that C. aromatica and C. comosa extracts, and their
isolated constituents had photoprotective effects against UVB-induced HaCaT keratinocyte
cells, which did not induce cell death. They increased cell proliferation, inhibited MMP-1
overexpression and restore cell cycle arrest in UVB-irradiated HaCaTs. C. aromatica and C.
comosa extracts and their isolated constituents may serve as potential candidates for the
prevention of skin photoaging. However, further studies are necessary to elucidate the
signaling pathways and molecular mechanisms involved in the anti-photoaging activity of
these agents.
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