

Pure and Applied Chemistry International Conference 2020

CHEMISTRY FOR CATALYZING Sustainability and Prosperity

FEBRUARY 13 - 14, 2020

IMPACT Forum, Muang Thong Thani Nonthaburi , THAILAND

Proceedings

The Pure and Applied Chemistry International Conference 2020 (PACCON2020) "Chemistry for Catalyzing Sustainability and Prosperity" February 13-14, 2020

at

IMPACT Forum, Muangthong Thani, Nonthaburi, Thailand

Organized by

The Chemical Society of Thailand under the Patronage of Professor Dr. Her Royal Highness Princess Chulabhorn Krom Phra Srisavangavadhana

In association with

Department of Chemistry, Faculty of Science and Technology Thammasat University

Proceedings of the Pure and Applied Chemistry International Conference 2020 (PACCON2020)

Editor-in-Chief	Peerasak Paoprasert
Prepared by	Department of Chemistry, Faculty of Science and Technology, Thammasat University
1 st Edition	May 2020 (available in PDF file only)

Editorial Information

Editor-in-Chief	Peerasak Paoprasert		
Editorial Board	see PACCON2020 Scientific Committee		
Editorial Staff	Chanatip Samart		
	Napaporn Youngvises		
	Sa-ad Riyajan		
	Yuthana Tantirungrotechai		
	Boonchoy Soontornworajit		
	Panumart Thongyoo		
	Natee Sirisit		
	Jatuporn Teerakul		

SCIENTIFIC SESSIONS:

AC	Analytical Chemistry			
Chair:	Assoc. Prof. Dr. Jaroon Jakmunee			
Co-Chair:	Dr. Supada Khonyoung			
СВ	Chemical Biology and Natural Products			
Chair:	Prof. Dr. Vatcharin Rukachaisirikul			
Co-Chair:	Asst. Prof. Dr. Panumart Thongyoo			
CE	Chemical Education			
Chair:	Assoc. Prof. Dr. Ekasith Somsook			
Co-Chair:	Asst. Prof. Dr. Supakorn Boonyuen			
CS	Catalysis Science and Technology			
Chair:	Prof. Dr. Kotohiro Nomura			
Co-Chair:	Asst. Prof. Dr. Suwadee Kongparakul			
EC	Environmental Chemistry and Engineering			
Chair:	Prof. Dr. Sandhya Babel			
Co-Chair:	Dr. Nopparat Pucktaveesak			
FA	Food and Agricultural Chemistry			
Chair:	Assoc. Prof. Dr. Prapasri Theprugsa			
Co-Chair:	Dr. Siriwit Buajarern			
IC	Inorganic Chemistry			
Chair:	Prof. Dr. Thawatchai Tuntulani			
Co-Chair:	Asst. Prof. Dr. Nanthawat Wannarit			
IE	Industrial Chemistry and Innovation			
Chair:	Prof. Dr. Sanong Ekgasit			
Co-Chair:	Assoc. Prof. Dr. Jirada Singkhonrat			
MN	Assoc. Prof. Dr. Sukrit Tantrawong			
Chair	Prof. Dr. Novodol Lassirinoiona			
Co Chair:	Assoc Prof Dr. Deerosek Doorresert			
	Assoc. 1101. DI. 1 eelasak 1 apprasent			
Chair:	Prof Dr Tiravut Vilaivan			
Co-Chair:	Dr. Peera Atcharasatien			
	Polymer Chemistry and Rio based Materials			
Chair:	Prof. Dr. Pramuan Tangborihoonrat			
Co-Chair:	Asst Prof Dr. Boonchoy Soontornworaiit			
РТ	Physical and Theoretical Chemistry			
Chair:	Assoc Prof Dr Vudhichai Parasuk			
Co-Chair	Assoc Prof. Dr. Yuthana Tantirungrotechai			
RE	Renewable Energy and Energy Storage			
Chair:	Prof. Dr. Guoqing Guan			

Inorganic Chemistry (IC)

Content	Page	
Iron (III)-selective optical sensor based on plasticized membrane	IC1-IC5	
incorporating ethyl protocatechuate compared with		
naked-eye screening method		
Phetlada Kunthadee, Montira Phaphan		
Reactivity of lithium carbonate and rice husk ash derived lithium	IC6-IC11	
orthosilicate by solid state reaction		
Chumphol Busabok, Piyalak Ngernchuklin, Wasana Khongwong		
Copper complexes containing polypyridyl ligands for alkane oxidation	IC12-IC17	
under mild condition		
Jantira Chimlert, Pattira Suktanarak, Tossapong Phuangburee, Mantana		
Paokhan, Nukorn Plainpan, Chadin Kulsing, Chomchai Suksai, Thawatchai		
Tuntulani, Pannee Leeladee		
Development of carbazole-based colorimetric sensor for selective	IC18-IC23	
detection of cyanide, carbonate and phosphate anions in water		
Preechaya Kramwon, Anchalee Sirikulkajorn		
Synthesis, spectral characterization and biological activities of the mixed	IC24-IC30	
ligand copper (II) complexes containing guanidine derivatives		
and antibiotic, ciprofloxacin		
Atittaya Meenongwa, Unchulee Chaveerach, Warongporn Rattanabun,		
Patsorn Srithep		
Synthesis of zinc (II) coordination polymer based on N-vinylimidazole	IC31-IC37	
and 2-aminoterephthalic acid mixed ligands		
Patsara Kwanmuang, Boontana Wannalerse, Tanwawan Duangthongyou		
Effect of synthesis methods on activity of TiO2/SiO2 photocatalysts for	IC38-IC42	
oxidative desulfurization		
Tu Thi Phuong Nguyen, Pawnprapa Pitakjakpipop, Wipark Anutrasakda		
Photocatalytic studies of ZnSn(OH)6 on the degradation of methylene	IC43-IC46	
blue		
Anisa Aiamwandee, Kulwadee Ponanunrirk, Phawit Putprasert		
Synthesis and fluorescence properties of carbazole-based chalcone	IC47-IC50	
Parichart Sornwai, Natcha Detsuk, Narumon Phonrung, Patcharanan Choto,		
Thitipone Suwunwong		

Synthesis, spectral characterization and biological activities of the mixed ligand copper(II) complexes containing guanidine derivatives and antibiotic, ciprofloxacin

Atittaya Meenongwa^{1*}, Unchulee Chaveerach², Warongporn Rattanabun¹, Patsorn Srithep¹

 ¹ Health Science and Aesthetic Program, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
 ² Material Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand *E-mail: atittaya.m@mail.rmutk.ac.th

The mixed ligand complexes of copper(II) chloride containing guanidine derivatives and ciprofloxacin (Hcip), $[CuL^1(cip)]Cl$ (1) and $[CuL^2(cip)]Cl$ (2), have been synthesized and physicochemically characterized. In these complexes, ciprofloxacin acts as the deprotonated bidentate ligand coordinated with the copper(II) center through oxygen atoms of the carboxylate and pyridine groups. The electronic spectra of new complexes indicate the squareplanar geometry with CuN₂O₂ chromophore. Their DNA cleaving ability toward plasmid pBR322 DNA has been investigated by gel electrophoresis. The results show that the DNA cleavage of the complexes probably involves the generation of reactive oxygen species in the oxidative mechanism with the cleaving activity of 2 > 1. The antibacterial activity of the complexes has been screened tested on Gram-negative (E. coli and Pseudomonas aeruginosa PAO01) and Gram-positive (Bacillus cereus) microorganisms in terms of minimum inhibitory concentration (MIC). Both complexes show better antibacterial activity against all tested bacteria than the starting compounds ($[CuL^1Cl_2]_2$ and $[CuL^2Cl_2]_2$). Especially, complex 2 displays greater biological activity against E. coli than 1 and ciprofloxacin. The cytotoxicity of the complexes further determined by Resazurin Microplate assay (REMA) reveals that only 2 can inhibit the proliferation of small cell lung cancer (NCI-H187) with better cytotoxicity than the corresponding starting complex.

1. Introduction

copper(II) complexes The with diverse organic ligands have been the subject of research studies to develop as new therapeutic agents.¹⁻³ Amidino-O-methylurea and its derivative are one of the interesting ligand systems. The biological activities of the copper(II) complexes containing these ligands in binding to DNA, DNA cleavage, anticancer as well as antibacterial activities have been reported by our research group.⁴⁻⁶ However, it necessary to be continually developed to improve both anticancer and antibacterial efficiency of the complexes. These evidences encourage us to synthesize the new compounds based on amidino-O-

methylurea by the addition of ciprofloxacin as the second ligand.

Ciprofloxacin (Hcip, Fig. 1) is an antibacterial drug used to treat diverse infections caused by Gram-negative bacteria, such as urinary tract infections, lower respiratory tract infections, bone and joint infections and typhoid fever.⁷ In addition, ciprofloxacin can act as bidentate ligand and coordinate with transition metal through the pyridone oxygen and one carboxylate oxygen. Several binary and ternary complexes of metal ions Mn²⁺, Fe³⁺, Co²⁺, Ni^{2+} , MoO_2^{2+} and Cu^{2+} with deprotonated ciprofloxacin have been studied in an attempt to investigate the structure, spectroscopic and biological properties.⁸⁻¹⁰

CHEMISTRY FOR CATALYZING SUSTAINABILITY AND PROSPERITY

Figure 1. Ciprofloxacin (Hcip).

In this paper, we describe the synthesis, characterization of two new mixligand copper(II) complexes of amidino-*O*methylurea and derivative with ciprofloxacin. Data on the biological activities of the synthesized complexes acting as an artificial nuclease, anticancer and antibacterial agents are also included.

2. Materials and Methods

2.1 Materials and physical measurements

chloride Copper(II) anhydrous, benzylamine, sodium dicyanamide and ciprofloxacin monochloride monohydrate were purchased from Sigma-Aldrich. The organic solvents and DI water with HPLC grade were purchased from Univar. Tris-HCl buffer (1 M) pH 7.0, 25X TAE (Tris-Acetate-EDTA) buffer and ethidium bromide (10 mg mL⁻¹) and agarose were purchased from Bio Basic INC. Plasmid pBR322 DNA (50 µg) was obtained from BBI Life Sciences. All chemical reagents were used as received and without further purification.

Elemental analysis (C, H, N) was performed with a CHNS/O elemental analyzer, Thermo Flash 2000. FT-IR spectra $(4000 - 400 \text{ cm}^{-1})$ were recorded on a FT-IR spectrophotometer, Perkin Elmer, Spectrum One. Electronic absorption spectra were recorded **UV-Vis-NIR** on a scanning spectrophotometer, Shimazu, UV-3101PC solid phase) UV-Vis (for the and spectrophotometer, Jasco, V-730 (for the methanolic solution phase). Mass spectra were

obtained on a liquid chromatographymicrOTOF mass spectrometer (LC-MS), Bruker. Gel electrophoresis was done on a horizontal electrophoresis system, Major Science and photographed under UV light on a Benchtop UV Transilluminator, UVP BioDoc-It Imaging System.

2.2 Synthesis of the copper(II) complexes of guanidine derivatives

The blue copper(II) complexes $[CuL^1Cl_2]_2$ and $[CuL^2Cl_2]_2$ were used as a starting complexes and prepared following the procedures as described in previous work.⁵

2.3 Synthesis of the mixed-ligand complexes (1 and 2)

The complex $[CuL^1Cl_2]_2$ (0.0501 g, 0.2 mmol) for **1** or $[CuL^2Cl_2]_2$ (0.0681 g, 0.2 mmol) for **2** in methanol (20 mL) was added to ciprofloxacin (cip) (0.1544 g, 0.4 mmol) deprotonated by 1 M NaOH (0.4 mL, 0.4 mmol). The resulting mixtures were adjusted the pH to 7.0 with 1 M NaOH and stirred at ambient temperature for 2 h. The excess solid was filtered off. The filtrate was kept overnight at low temperature. The purple product was obtained, filtered, washed with cold water and dried in a vacuum desiccator.

[$Cu(L^1)(cip)$] $Cl\cdot 2H_2O$ (1), Yield: 60%. M.p. 210 – 212 °C. Elemental analysis found (%): C, 41.62; H, 5.71; N, 17.72; calculated for C₂₀H₂₉N₇O₆FCl (MW. = 581) (%): C, 41.27; H, 4.99; N, 16.85. FT-IR (KBr, cm⁻¹): 3486, v_{as}(NH₂); 1630 v_s(NH₂); 1623, v(CO); 1587 v_{as}(CO₂); 1377, v_s(CO₂). ESI⁺ (m/z): 509, [CuL¹(cip)]⁺.

[$Cu(L^2)(cip)$] $Cl\cdot 2H_2O$ (2), Yield: 72%. M.p. 238 – 241 °C. Elemental analysis found (%): C, 47.98; H, 5.56; N, 15.08; calculated for C₂₇H₃₅N₇O₆FCl (MW. = 671) (%): C, 48.28; H, 5.21; N, 14.61. FT-IR (KBr, cm⁻¹): 3501, v_{as}(NH₂); 1624 v(CO); 1583 v_{as}(CO₂); 1381, v_s(CO₂). ESI⁺ (m/z): 599, [CuL²(cip) - H]²⁺.

2.4 DNA cleavage assay

Nuclease activity of the complexes was investigated by gel electrophoresis. Tris-

buffer (5 mM Tris-HCl/50 mM NaCl) containing 15% DMSO was used as a solvent. The samples were prepared by mixing plasmid pBR322 DNA (4361 bp, 0.2 µg) with the complexes $(100 - 1000 \mu M)$ in the buffer (10 µL) and incubated at 37 °C for 24 h. A loading dye (2 µL) was added into the samples after incubation and subjected into 0.8% agarose gel immersed in a 1X TAE running buffer. The gel was electrophoresed at 50 V for 1 h, stained with EB for 5 min and photographed under UV light. To explore the possible DNA cleavage mechanism, H_2O_2 (10 μ M) was further added into the samples containing plasmid pBR322 DNA and the complexes, and then incubated at 37 °C for 1 h.

2.5 In vitro antimicrobial test

of Antibacterial activities the complexes against two Gram-negative bacteria, Е. coli ATCC 25922 and Pseudomonas aeruginosa PAO1, and one Gram-positive bacteria, Bacillus cereus were investigated by optical density (OD) measurement at 600 nm (for E. coli and *Pseudomonas aeruginosa*)¹¹ and Resazurin Microplate assay (REMA)¹² (for Bacillus cereus). Amikacin and ofloxacin were used as positive control for E. coli and Pseudomonas aeruginosa, and vancomycin was used that for Bacillus cereus. The 0.5% DMSO was used as negative control for all tested bacteria. Bacterial growth was observed by OD₆₀₀ measurement using microplate reader. Percentage of bacterial inhibition was calculated by Eq. (1).

% Inhibition =
$$[1 - (OD_T/OD_C)] \times 100$$
 (1)

Where OD_T and OD_C represent the mean ODunit of cells treated with test compound and that treated with 0.5% DMSO, respectively. Similarly, fluorescence signals for REMA assay were measured using SpectraMax M5 multi-detection microplate reader (Molecular devices, USA) at the excitation and emission wavelengths of 530 and 590 nm, respectively. Inhibition percentage of the bacterial growth was calculated by Eq. (2).

% Inhibition =
$$[1 - (F_{UT}/F_{UC})] \times 100$$
 (2)

Where F_{UT} and F_{UC} are the mean fluorescence unit from the treated and untreated conditions by the copper(II) complexes, respectively. The MIC values defined as the lowest concentration of compound exhibiting 90% inhibition of bacterial growth after exposure incubation were also determined. This assay was performed in triplicate.

2.6 In vitro anticancer test

Anticancer activities of the complexes against 5 human cancer cell lines including KB (ATCC CCL-17), MCF-7 (ATCC HTB-22), NCI-H187 (ATCC CRL-5804), HepG2 (ATCC HB-8065) and CaCo2 (ATCC HTB-37) were investigated by Resazurin Microplate assay (REMA).¹² The anticancer activity of the copper(II) complexes was expressed as 50% inhibitory concentration (IC₅₀) determined from dose-response curves using the SOFTMax Pro software (Molecular devices, USA). The plotted data were obtained from 6 concentrations of 2-fold serially diluted samples.

3. Results & Discussion

3.1 General properties of the mixed-ligand complexes

The mixed-ligand complexes (1 and 2) were synthesized by the reaction of ciprofloxacin with the blue starting complexes $[CuL^1Cl_2]_2$ or $[CuL^2Cl_2]_2$ in a 2:1 mole ratio according to the proposed mechanism: $2Hcip \cdot HCl \cdot H_2O + 2NaOH \rightarrow 2cip^- + 2NaCl + 4H_2O$ (3)

 $[\operatorname{CuL}^{1/2}\operatorname{Cl}_2]_2 + 2\operatorname{cip}^{-} \rightarrow 2[\operatorname{CuL}^{1/2}(\operatorname{cip})]\operatorname{Cl} + 2\operatorname{Cl}^{-}$ (4)

 $2\text{Hcip} \cdot \text{HCl} \cdot \text{H}_2\text{O} + [\text{CuL}^{1/2}\text{Cl}_2]_2 \rightarrow \\2[\text{CuL}^{1/2}(\text{cip})]\text{Cl} + 2\text{NaCl} (5)$

Initially, ciprofloxacin was deprotonated by NaOH to obtain cip⁻ form (3) and continually reacted with $[CuL^{1/2}Cl_2]_2$ (4). The overall

IC26

CHEMISTRY FOR CATALYZING SUSTAINABILITY AND PROSPERITY

reaction as shown in (5). The change in color from blue to purple was observed after reacting with ciprofloxacin, indicating that the reactions have taken place. A by-product NaCl was removed by washing with water and checked by the AgNO₃ solution. All resulting complexes are soluble mainly in methanol, DMSO and slightly soluble in water. Additionally, they show high melting points, suggesting the stability in air. Elemental data (C, H and N) of the complexes are in good agreement with theoretical expectation.

3.2 Spectroscopic studies of the mixed-ligand complexes

The spectroscopic data of the complexes are summarized in Table 1. Figure 2 shows infrared spectra of 1, 2, ciprofloxacin, $[CuL^1Cl_2]_2$ and $[CuL^2Cl_2]_2$. The peak at 1709 cm⁻¹ assigned to the stretching vibrations of carboxylic group $(v(C=O)_{carb})$ of free ciprofloxacin is disappeared on complexation with the starting compounds and replaced by two strong characteristic bands at 1587 and 1377 cm^{-1} for **1**, and 1583 and 1381 cm⁻¹ for 2 corresponding to asymmetric $v_{as}(CO_2)$ and symmetric $v_s(CO_2)$ stretching vibrations, respectively. The frequency separation ($\Delta v =$ $v_{as}(CO_2)-v_s(CO_2)$) is used to determine the coordination mode of ciprofloxacin (Table 1). It is found in the range of 200 - 230 cm⁻¹ suggesting an unidentate bonding nature for the carboxylate group of ciprofloxacin.¹³ In addition, the pyridone stretching $v(C=O)_p$ vibration at 1623 cm⁻¹ of ciprofloxacin is slightly shifted upon complexation. This result confirms that ciprofloxacin coordinates to the copper(II) center as chelating ligand through the carboxylate and pyridone oxygen atoms. Moreover, the vibrational bands of the L^1 or L^2 ligands are observed in the infrared spectra of **1** and **2**.

The mixed-ligand complexes (1 and 2) in the solid and methanolic solution phases displayed the similar d-d absorption band at ~18,000 cm⁻¹ indicating the stability of the square planar geometry of these compounds which is probably unchanged and not affected by the of solvent molecules. Moreover, the changed color from the blue starting complexes to the purple complexes 1 and 2 suggested that the environment around the copper(II) centers of 1 and 2 differs from that of their starting compounds.⁵

Figure 2. Overlayered FT-IR spectra of $[CuL^1Cl_2]_2$, $[CuL^2Cl_2]_2$, ciprofloxacin, 1 and 2.

IC27

 Table 1. Spectroscopic (FT-IR, electronic absorption and mass) measurement data of the complexes.

Compound	FT-IR bands (cm ⁻¹)				Electronic absorption (cm ⁻¹)		
	v(C=O)	$v_{as}(CO_2)$	$v_s(CO_2)$	Δ^{a}	in solid	in solution	
1	1630	1587	1377	210	17 746	17 699	
2	1624	1583	1381	202	17 921	17 794	
Ciprofloxacin	1623						
$^{a}\Delta = v_{as}(CO_{2}) - v_{s}(CO_{2}).$							

Mass spectra of the complexes (Figure 3) display the parent peaks of the molecular ions including $[CuL^{1}(cip)]^{+}$ (*m*/*z* 509) for **1** and $[CuL^{2}(cip)-H]^{2+}$ (*m*/*z* 599) for **2**. In addition, the peaks of other molecular ions observed in Figure 3a are probably generated during the ionization process.

Figure 3. ESI+ mass spectra of the complexes (a) **1** and (b) **2**.

3.3 Cleavage of plasmid pBR322 DNA

Electrophoretic diagram (Figure 4) reveals that with enhancement of the complex concentration, only the extent of nicked Form II increased due to single-strand scission of supercoiled Form I initiated from 200 µM for 1 (lane 3a) and 100 μ M for 2 (lane 2b). It suggests that DNA cleavage activity of 2 > 1. In addition, H_2O_2 (10 μ M) which itself does not cause any DNA degradation (Figure 5, lane 2) was added to investigate the possible DNA cleavage mechanism. Both complexes show much more efficiency in cleaving DNA in the presence of H_2O_2 as observed by the linear Form III (lane 4) and a tiny piece of DNA that looks like a smear (lanes 5-9 and 11-16). Possible DNA cleavage mechanism of copper(II) complexes in the presence of H_2O_2 under aerobic environment has been proposed to be an oxidative pathway.

Lanes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5. DNA cleavage of 1 and 2 toward pBR322 DNA in the present of H_2O_2 .

3.4 In vitro antimicrobial activity

Antimicrobial activity of 1 and 2 further tested against E. coli, Pseudomonas and Bacillus cereus bacteria. The results reveal that 1 and 2 are active to all tested microorganisms while the starting complexes do not show inhibitory activity (Table 2). Both 1 and 2 are more potent against E. coli than Pseudomonas aeruginosa and Bacillus cereus. In particular complex 2 expresses significantly greater antimicrobial activity against E. coli than ciprofloxacin. These confirm that the existence results of ciprofloxacin in the copper(II) complexes can enhance the bactericidal activity.

Table 2. Antimicrobial activity expressed by MIC values for 1 and 2 and the related compounds.

Compound	MIC ^a ($\mu g m L^{-1}$) ± S.D.			
	E. coli	Pseudomonas aeruginosa	Bacillus cereus	
1	0.01323 ± 0.01069	0.16257 ± 0.0056	6.25	
2	0.00637 ± 0.0057	0.0977	6.25	
$[CuL^1Cl_2]_2$	Inactive	Inactive	Inactive	
$[CuL^2Cl_2]_2$	Inactive	Inactive	Inactive	
Ciprofloxacin	0.01627 ± 0.00704	0.0977	6.25	

^a MIC means the lowest concentration of the complexes which prevent visible growth of bacteria.

Table 5. Antican	cer activity for		related compour	ilus against ilve	cancer cen mies.
Compound			IC ₅₀ ^a (µg mL ⁻¹)		
	KB ^b	MCF-7 ^b	NCI-H187 ^b	HepG2 ^b	CaCo2 ^b
1	Inactive	Inactive	Inactive	Inactive	Inactive
2	Inactive	Inactive	36.71	Inactive	Inactive
$[CuL^1Cl_2]_2$	Inactive	Inactive	49.42^{6}	Inactive	Inactive
$[CuL^2Cl_2]_2$	22.51^{6}	Inactive	47.63 ⁶	33.39	68.19

Table 3. Anticancer activity for 1 and 2 and the related compounds against five cancer cell lines.

^a IC_{50} means the concentration of an inhibitor where the response (or binding) is reduced by 50%.

^b Human cancer cell lines: KB (oral cavity cancer); MCF-7 (breast cancer)); NCI-H187 (small cell lung cancer); HepG2 (hepatocarcinoma) and CaCo2 (caucasian colon adenocarcinoma).

3.5 In vitro antiproliferative activity

The results of the anticancer activity of the complexes listed in Table 3 show that copper(II) complexes containing the ciprofloxacin are almost inactive against all tested human cancer cell lines excepting NCI-H187 for complex 2 with better activity than it starting compound $[CuL^2Cl_2]_2$. The reason is probably due to the complex structure of ciprofloxacin that can increase anticancer activity with more specific cancer cell lines, especially, the small cell lung cancer (NCI-H187).

4. Conclusion

In conclusion, we have demonstrated that ciprofloxacin can significantly increase the biological activity of 1 and 2, particularly, antimicrobial activity against *E. coli*. It points to the possibility of further development of these two complexes as new antibacterial agents.

Acknowledgements

This work was financially supported by research fund of Rajamangala University of Technology Krungthep, 2017.

References

- Fei, B.-L.; Tu, S.; Wei, Z.; Wang, P.; Qiao, C.; Chen, A.-F. *Eur. J. Med.* 2019, *176*, 175-186.
- 2. Krishnegowda, H.M.; Karthik, C.S.; Marichannegowda, M.H.; Kumara, K.; Kudigana, P.J.; Lingappa, M.; Mallu, P.;

Neratur, L.K. *Inorg. Chim. Acta* **2019**, 484, 227-236.

- Zafar, A.; Singh, S.; Ahmad, S.; Khan, S.; Siddiqi, M.I.; Naseem, I. *Bioorg. Chem.* 2019, 87, 276-290.
- Chaveerach, U.; Meenongwa, A.; Trongpanich, Y.; Soikum, C.; Chaveerach, P. *Polyhedron*, **2010**, *29*, 731-738.
- Meenongwa, A.; Chaveerach, U.; Siriwong, K. *Inorg. Chim. Acta* 2011, *366*, 357-365.
- Meenongwa, A.; Brissos, R.F.; Soikum, C.; Chaveerach, P.; Gamez, P.; Trongpanich, Y.; Chaveerach, U. *New J. Chem.* 2015, *39*, 664-675.
- 7. King, D.E.; Malone, R.; Lilley, S.H. Am. Fam. Phys. **2000**, *61*, 2741-2748.
- 8. Psomas, G. J. Inorg. Biochem. 2008, 102, 1798-1811.
- Hernámdez-Gil, J.; Perelló, L.; Ortiz, R.; Alzuet, G.; González-Álvarez, M.; Liu-González, M. *Polyhedron*, 2009, 28, 138-144.
- 10. Kharadi, G.J. *Spectrochim. Acta A*, **2011**, 79, 898-903.
- 11. Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically; Approved Standard M7-A6, 7th edn. National Committee for Clinical Laboratory Standards: Wayne; Philadelphia, 2003.
- Brien, J.O.; Wilson, I.; Orton, T.; Pognan, F. *Eur. J. Biochem.* 2000, 267, 5421-5426.
- 13. Nakamoto, K. Infrared and Raman

Spectra of Inorganic and Coordination Compounds, fourth ed., Wiley, New York, 1986.