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Abstract : Soft set theory was introduced by Molodtsov in 1999 as a general mathemat-
ical tool for dealing with problems that contain uncertainity. In this paper, we provide a
definition of k-soft hypergroups and study some properties of homomorphisms of hyper-
groups (Z,◦mZ) and (Zn,◦mZn) that induce soft homomorphisms on k-soft hypergroup and
kn-soft hypergroup.
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1 Introduction
The set of integers, the set of rational numbers and the set of real numbers are denoted by
Z, Q and R, respectively.

A hyperoperation on a non-empty set H is a function ◦ : H ×H → P(H)�{∅} where
P(H) is the power set of H. The value of (x,y) ∈ H ×H under ◦ is denoted by x◦ y which
is called the hyperproduct of x and y. The system (H,◦) is called a hypergroupoid. For
A,B ⊆ H and x ∈ H, let

A◦B =
⋃
a∈A
b∈B

a◦b, A◦ x = A◦{x} and x◦A = {x}◦A.

The hypergroupoid (H,◦) is called a semihypergroup if

(x◦ y)◦ z = x◦ (y◦ z) for all x,y,z ∈ H.

A hypergroup is a semihypergroup (H,◦) satisfying the condition

H ◦ x = x◦H = H for all x ∈ H.

Then hypergroups are a generalization of groups.
Let (H,◦) be a hypergroup and K be a non-empty subset of H, then K is called a

subhypergroup if (K,◦) is a hypergroup.
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Let (H1,◦) and (H2,∗) be two hypergroupoids. The map f : H1 → H2 is called a good
homomorphism if for all x,y ∈ H1 the following relation holds: f (x◦ y) = f (x)∗ f (y) and
is called an (inclusion) homomorphism if f (x◦ y) ⊆ f (x)∗ f (y).

We denoted Hom((H1,◦),(H2,∗)), GHom((H1,◦),(H2,∗)), the set of all (inclusion)
homomorphism and the set of all good homomorphism from (H1,◦) into (H2,∗), respec-
tively. Let Hom(H,◦), GHom(H,◦) stand for Hom((H,◦),(H,◦)) and GHom((H,◦),(H,◦))
respectively. For f ∈Hom((H1,◦),(H2,∗)), f is called an epimorphism if f (H1) = H2. We
denote Epi((H1,◦),(H2,∗)) and GEpi((H1,◦),(H2,∗)) for the set of all epimorphisms and
the set of all good epimorphisms from (H1,◦) into (H2,∗), respectively. Let Epi(H,◦),
GEpi(H,◦) stand for Epi((H,◦),(H,◦)) and GEpi((H,◦),(H,◦)) respectively.

Example 1.1. [2] Let G be a group and N a normal subgroup of G. If ◦N is the hyperop-
eration defined on G by

x◦N y = xyN for all x,y ∈ G,

then (G,◦N) is a hypergroup.

Example 1.2. [2] Let G be a group. For x,y ∈ G, define

x◦ y =< x,y >, the subgroup of G generated by x and y,

then (G,◦) is a hypergroup. Note that if (A,+) is an abelian group, then x ◦ y = Zx +Zy
for all x,y ∈ A.

Let U be an initial universe set and E be a set of parameters. The power set of U is
denoted by P(U) and A is a subset of E.

A pair (F,A) is called a soft set over U , where F is a mapping given by

F : A → P(U).

The set Supp(F,A) = {x ∈ A|F(x) �= ∅} is called the support of the soft set (F,A). If
Supp(F,A) �= ∅, then a soft set (F,A) is called non-null.

Let (F,A) and (G,B) be two soft sets over U and U ′ respectively, f : U →U ′, g : A→B
be two functions. Then we say that pair ( f ,g) is a soft function from (F,A) to (G,B)
denoted by ( f ,g) : (F,A) → (G,B) if it satisfies

f (F(x)) = G(g(x))

for all x ∈ A. If f and g are injective (resp. surjective, bijective), then ( f ,g) is said to be
injective (resp. surjective, bijective).

Example 1.3. [1] Let us consider a soft set (F,E) which describes the ”attractiveness of
houses” that Mr. X is considering for purchase.

Suppose that there are six houses in the universe U = {hl ,h2,h3,h4,h5,h6} under con-
sideration, and that E = {el ,e2,e3,e4,e5} is a set of decision parameters. The ei(i =
1,2,3,4,5) stand for the parameters ”expensive”, ”beautiful”, ”wooden”, ”cheap” and
”in green surroundings” respectively.

Consider the mapping F given by ”houses(*)”, where (∗) is to be filled in by one of
the parameters ei ∈ E. For instance, F(e1) means ”houses(expensive)”, and its functional
value is the set {h ∈U : h is an expensive house}.
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Suppose that F(e1) = {h2,h4}, F(e2) = {h1,h3}, F(e3) = ∅, F(e4) = {h1,h3,h5} and
F(e5) = {h1}. Then we can view the soft set (F,E) as consisting of the following collection
of approximations:

(F,E) = {(expensive houses,{h2,h4}),(beautiful houses,{h1,h3}),(wooden houses,∅),
(cheap houses,{h1,h3,h5}),(in the green surroundings,{h1})}.

Each approximation has two parts: a predicate and an approximate value set.

2 Preliminaries

2.1 Hypergroups

From Example 1.1, let (Z,+),(Zn,+) be groups and mZ,mZn are subgroups of (Z,+),(Zn,+),
respectively. Then (Z,◦mZ) and (Zn,◦mZn) are the hypergroups where

x◦mZ y = x+ y+mZ ∀x,y ∈ Z

x̄◦mZn ȳ = x̄+ ȳ+mZn ∀x,y ∈ Z.

Theorem 2.1. [4] For f : Z → Z, the following statements are equivalent:

(i) f ∈ Hom(Z,◦mZ).

(ii) f (x+mZ) ⊆ x f (1)+mZ for all x ∈ Z.

(iii) There exists an integer a such that

f (x+mZ) ⊆ xa+mZ.

Theorem 2.2. [4] For f : Z → Z, f ∈ Epi(Z,◦mZ) if and only if

(i) f (x+mZ) = x f (1)+mZ for all x ∈ Z and

(ii) f (1) and m are relatively prime.

Theorem 2.3. [4] For f : Zn → Zn, the following statements are equivalent:

(i) f ∈ Hom(Zn,◦mZn).

(ii) f (x̄+mZn) ⊆ x f (1̄)+mZn for all x ∈ Z.

(iii) There exists an integer a such that

f (x̄+mZn) ⊆ xā+mZn.

Theorem 2.4. [4] For f : Zn → Zn, f ∈ Epi(Zn,◦mZn) if and only if

(i) f (x̄+mZn) = x f (1̄)+mZn for all x ∈ Z and

(ii) If f (1̄) = ā for a ∈ Z, then a and (m,n) are relatively prime.
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2.2 Soft Hypergroup
Let (F,A) be a non-null soft set over H. Then (F,A) is called a soft hypergroup over H if
F(x) is a subhypergroup of H for all x ∈ Supp(F,A).

Let (F,A) and (G,B) be two non-empty soft hypergroupoids over H1 and H2, respec-
tively. Let ( f ,g) be a soft function from (F,A) to (G,B). If f is an inclusion (resp. good)
homomorphism from H1 to H2, then ( f ,g) is said to be a soft inclusion (resp. good) ho-
momorphism of hypergroupoids.

For soft hypergroups (F,A) and (G,B) over H1 and H2 respectively. Denote the set of
all soft inclusion homomorphisms and the set of all soft good homomorphisms from (F,A)
to (G,B) by SfHom((F,A)(H1,◦),(G,B)(H2,∗)) and SfGHom((F,A)(H1,◦),(G,B)(H2,∗)), re-
spectively. Let SfHom((F,A),(G,B))(H,◦) and SfGHom((F,A),(G,B))(H,◦) stand for
SfHom((F,H)(H,◦),(G,H)(H,◦)) and SfGHom((F,H)(H,◦),(G,H)(H,◦)) respectively.

2.3 k-Soft Hypergroup and kn-Soft Hypergroup
For m ∈ Z+. Let F : Z → P(Z) be a mapping given by

F(x) =

{
xZ x|m
Z x � m.

Then (F,Z) is a soft set over Z. Since F(x) �= ∅ for all x ∈Z, then Supp(F,Z) �= ∅. Hence
(F,Z) is a non-null.

Proposition 3.1 and 3.2 are shown that (kZ,◦mZ), (kZn,◦mZn) are subhypergroups of
(Z,◦mZ), (Zn,◦mZn) respectively. For a hypergroup (Z,◦mZ). If k|m, then (Fk,Z) is called
a k-soft hypergroup over Z where Fk : Z → P(Z) defined by

Fk(x) =

{
kZ x|m
Z x � m.

For a hypergroup (Zn,◦mZn). If (k,n)|(m,n), then (Fk,Zn) is called a kn-soft hypergroup
over Zn where Fk : Zn → P(Zn) defined by

Fk(x) =

{
kZn (x,n)|(m,n)
Zn (x,n) � (m,n).
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3 Main Results
Throughout this Section, let (Z,◦mZ) and (Zn,◦mZn) be hypergroups, (Fk,Z) and (Gk,Z)
be k-soft hypergroups over Z and (Fk,Zn) and (Gk,Zn) be kn-soft hypergroups over Zn.

Proposition 3.1. For m ∈ Z+, if k|m then (kZ,◦mZ) is a subhypergroup of (Z,◦mZ).

Proof. Since k|m then mZ ≤ kZ. Thus for every x ∈ kZ,

kZ◦mZ x =
⋃

t∈kZ
(t ◦mZ x)

=
⋃

t∈kZ
(t + x+mZ)

= kZ+ x+mZ = kZ.

Similarly, x◦mZ kZ = kZ.
Hence (kZ,◦mZ) is a subhypergroup of (Z,◦mZ).

Proposition 3.2. For m,n ∈ Z+, if (k,n)|(m,n) then (kZn,◦mZn) is a subhypergroup of
(Zn,◦mZn).

Proof. Since (k,n)|(m,n) then mZn ≤ kZn. Thus for every x̄ ∈ kZn

kZ◦mZn x̄ =
⋃

t̄∈kZ
(t̄ ◦mZn x̄)

=
⋃

t̄∈kZ
(t̄ + x̄+mZn)

= kZn + x̄+mZn = kZn.

Similarly, x̄◦mZn kZn = kZn.
Hence (kZn,◦mZn) is a subhypergroup of (Zn,◦mZn).

Theorem 3.3. For m,k ∈ Z+ and k|m. If f ∈ Hom(Z,◦mZ), then f (x + mZ) ⊆ kZ for all
x ∈ kZ.

Proof. Assume f ∈ Hom(Z,◦mZ) and k|m. Then m = ks for some s ∈ Z. Let x ∈ kZ. Then
x = kt for some t ∈ Z. Since f (a+mZ) ⊆ a f (1)+mZ for all a ∈ Z,

f (x+mZ) ⊆ x f (1)+mZ

= kt f (1)+(ks)Z
⊆ kt f (1)+ kZ

⊆ kZ.

Corollary 3.4. For n,m,k ∈ Z+ and (k,n)|(m,n). If f ∈ Hom(Zn,◦mZn),
then f (x̄+mZn) ⊆ kZn for all x̄ ∈ kZn.

Theorem 3.5. For m,k ∈ Z+ and k|m. Then

kZ = (1 · k +mZ)∪ . . .∪ (ak +mZ) =
a⋃

i=1
(ik +mZ)

where ak = m.
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Proof. Since k|m and m,k ∈ Z+, ak = m for some a ∈ Z+. For x ∈ Z, by the Division
Algorithm, x = aq+ r for some q,r ∈ Z and 0 ≤ r < a. Then

kx = k(aq+ r)
= kaq+ rk
= mq+ rk ∈ rk +mZ.

Therefore kZ ⊆
a⋃

i=1
(ik +mZ).

For i = 1, . . .a, let y ∈ ik +mZ. Then y = ik +mt for some t ∈ Z. Thus

y = ik +akt = k(i+at) ∈ kZ,

so ik +mZ ⊆ kZ. Therefore
a⋃

i=1
(ik +mZ) ⊆ kZ.

Hence kZ =
a⋃

i=1
(ik +mZ).

Corollary 3.6. For n,m,k ∈ Z+ and (k,n)|(m,n). Then

kZn = (1 · k̄ +mZ)∪ . . .∪ (ak̄ +mZn) =
a⋃

i=1
(ik̄ +mZn)

where a(k,n) = n.

Theorem 3.7. For m,k ∈ Z+, k|m and f ∈ Hom(Z,◦mZ). If g is an identity mapping, then
( f ,g) ∈ SfHom((Fk,Z),(Gk,Z))(Z,◦mZ) if and only if f (1) and m are relatively prime and
x f (1)+mZ ⊆ f (x+mZ) for x = 1, . . . ,m.

Proof. Let g be an identity map and f ∈ Hom(Z,◦mZ).
Assume that ( f ,g) ∈ SfHom((Fk,Z),(Gk,Z))(Z,◦mZ). So f (Z) = Z. Hence f is onto.

By Theorem 2.2, f (1) and m are relatively prime and x f (1) + mZ ⊆ f (x + mZ) for x =
1, . . . ,m.

Conversely, assume that f (1) and m are relatively prime and x f (1)+mZ ⊆ f (x+mZ)
for x = 1, . . . ,m, we will show that f (Fk(x)) = Gk(g(x)) for all x ∈ Z.
If Fk(x) = Z. By Theorem 2.2, f (Z) = Z.
If Fk(x) = kZ. Then

f (kZ) = f (
a⋃

i=1
(ik +mZ)) (by Theorem 3.5)

=
a⋃

i=1
f (ik +mZ)

=
a⋃

i=1
(ik f (1)+mZ) by f ∈ Hom(Z,◦mZ) and x f (1)+mZ ⊆ f (x+mZ).

Since f (1) and m are relatively prime, i f (1)+ mZ �= j f (1)+ mZ for i �= j. By Theorem

3.3, that is f (x+mZ) ⊆ kZ for all x ∈ kZ. We have f (kZ) =
a⋃

i=1
(ik f (1)+mZ) = kZ.

Therefore ( f ,g) ∈ SfHom((Fk,Z),(Gk,Z))(Z,◦mZ).
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Corollary 3.8. For an identity mapping g,

f ∈ Epi(Z,◦mZ) if and only if ( f ,g) ∈ SfHom((Fk,Z),(Gk,Z))(Z,◦mZ).

Theorem 3.9. For m,k,n ∈ Z+, (k,n)|(m,n) and f ∈ Hom(Zn,◦mZn). If g is an identity
mapping, then ( f ,g) ∈ SfHom((Fk,Zn),(Gk,Zn))(Zn,◦mZn ) if and only if f (1̄) and (m,n)

are relatively prime and x f (1̄)+mZn ⊆ f (x̄+mZn) for x = 1, . . . ,
n

(m,n)
.

Proof. Let g be an identity map and f ∈ Hom(Zn,◦mZn).
Assume that ( f ,g) ∈ SfHom((Fk,Zn),(Gk,Zn))(Zn,◦mZn ). So f (Zn) = Zn. Hence f

is an onto. By Theorem 2.4, f (1̄) and (m,n) are relatively prime and x f (1̄) + mZn ⊆
f (x̄+mZn) for x = 1, . . . ,

n
(m,n)

.

Conversely, assume that f (1̄) and (m,n) are relatively prime and x f (1̄)+mZn ⊆ f (x̄+
mZn) for x = 1, . . . ,

n
(m,n)

, we will show that f (Fk(x)) = Gk(g(x)) for all x ∈ Z.

If Fk(x) = Zn. By Theorem 2.4, f (Zn) = Zn.
If Fk(x) = kZn. Then

f (kZn) = f (
a⋃

i=1
(ik̄ +mZn)) (by Corollary 3.6)

=
a⋃

i=1
f (ik̄ +mZn)

=
a⋃

i=1
(ik̄ f (1̄)+mZn) by f ∈ Hom(Z,◦mZn) and x f (1̄)+mZn ⊆ f (x̄+mZn).

Since f (1̄) and (m,n) are relatively prime, i f (1̄)+mZn �= j f (1̄)+mZn for i �= j. By Corol-

lary 3.4, that is f (x̄+mZn)⊆ kZn for all x̄∈ kZn. We have f (kZn) =
a⋃

i=1
(ik f (1̄)+mZn) = kZn.

Therefore ( f ,g) ∈ SfHom((Fk,Zn),(Gk,Zn))(Zn,◦mZn ).

Corollary 3.10. For an identity mapping g,

f ∈ Epi(Zn,◦mZn) if and only if ( f ,g) ∈ SfHom((Fk,Zn),(Gk,Zn))(Zn,◦mZn ).

Example 3.11. Consider m = 12, f ∈ Hom(Z,◦12Z) so ( f ,g) is a soft inclusion homomor-
phism from (F4,Z) into (G4,Z) where f (1) = 5,5x+12Z⊆ f (x+12Z) and g is an identity
map.

If 5x+12Z � f (x+12Z) then f (x+12Z) �= 5x+12Z. So

f (4Z) = f (
3⋃

i=1
(4i+12Z))

=
3⋃

i=1
f (4i+12Z)

�=
3⋃

i=1
(4i f (1)+12Z)

= (8+12Z)∪ (4+12Z)∪ (12Z) = 4Z.
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Hence f (4Z) �= 4Z and ( f ,g) /∈ SfHom((F4,Z),(G4,Z))(Z,◦12Z).

If f (1) = 3 then f (Z) �= Z since Z =
11⋃

i=1
(i+12Z)

f (Z) = f (
11⋃

i=1
(i+12Z))

=
11⋃

i=1
f (i+12Z)

=
11⋃

i=1
(i f (1)+12Z)

= (3+12Z)∪ (6+12Z)∪ (9+12Z)∪ (12Z) �= Z.

Hence ( f ,g) /∈ SfHom((F4,Z),(G4,Z))(Z,◦12Z).

In conclusion, we will see that soft homomorphisms on (Z,◦mZ) preserves k-soft hy-
pergroups that is the following corollary.

Corollary 3.12. For m∈Z+ and g is an identity mapping. If ( f ,g)∈SfHom((Fk,Z),(Gl ,Z))(Z,◦mZ),
then k = l.
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