Soft Homomorphisms of k-Soft Hypergroups

W. Phanthawimol ${ }^{1}$ and P. Yoosomran ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences
Ramkhamhaeng University, Bangkok 10240, THAILAND
golfma35@yahoo.com
${ }^{2}$ Department of Mathematics, Faculty of Sciences
Ramkhamhaeng University, Bangkok 10240, THAILAND
fscipsy@ku.ac.th

Abstract

Soft set theory was introduced by Molodtsov in 1999 as a general mathematical tool for dealing with problems that contain uncertainity. In this paper, we provide a definition of k-soft hypergroups and study some properties of homomorphisms of hypergroups $\left(\mathbb{Z}, \circ_{m \mathbb{Z}}\right)$ and $\left(\mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right)$ that induce soft homomorphisms on k-soft hypergroup and k_{n}-soft hypergroup.

Keywords : hyperstructure; soft set; soft hypergroup; soft homomorphism.
2010 Mathematics Subject Classification : 20N20

1 Introduction

The set of integers, the set of rational numbers and the set of real numbers are denoted by \mathbb{Z}, \mathbb{Q} and \mathbb{R}, respectively.

A hyperoperation on a non-empty set H is a function $\circ: H \times H \rightarrow P(H) \backslash\{\varnothing\}$ where $P(H)$ is the power set of H. The value of $(x, y) \in H \times H$ under \circ is denoted by $x \circ y$ which is called the hyperproduct of x and y. The system (H, \circ) is called a hypergroupoid. For $A, B \subseteq H$ and $x \in H$, let

$$
A \circ B=\bigcup_{\substack{a \in A \\ b \in B}} a \circ b, A \circ x=A \circ\{x\} \text { and } x \circ A=\{x\} \circ A \text {. }
$$

The hypergroupoid (H, \circ) is called a semihypergroup if

$$
(x \circ y) \circ z=x \circ(y \circ z) \quad \text { for all } x, y, z \in H .
$$

A hypergroup is a semihypergroup (H, \circ) satisfying the condition

$$
H \circ x=x \circ H=H \quad \text { for all } x \in H .
$$

Then hypergroups are a generalization of groups.
Let (H, \circ) be a hypergroup and K be a non-empty subset of H, then K is called a subhypergroup if (K, \circ) is a hypergroup.

[^0]Copyright (c) 2014 by the AMM2014. All rights reserved.

Let $\left(H_{1}, \circ\right)$ and $\left(H_{2}, *\right)$ be two hypergroupoids. The map $f: H_{1} \rightarrow H_{2}$ is called a good homomorphism if for all $x, y \in H_{1}$ the following relation holds: $f(x \circ y)=f(x) * f(y)$ and is called an (inclusion) homomorphism if $f(x \circ y) \subseteq f(x) * f(y)$.

We denoted $\operatorname{Hom}\left(\left(H_{1}, \circ\right),\left(H_{2}, *\right)\right), \operatorname{GHom}\left(\left(H_{1}, \circ\right),\left(H_{2}, *\right)\right)$, the set of all (inclusion) homomorphism and the set of all good homomorphism from $\left(H_{1}, \circ\right)$ into $\left(H_{2}, *\right)$, respectively. Let $\operatorname{Hom}(H, \circ), \operatorname{GHom}(H, \circ)$ stand for $\operatorname{Hom}((H, \circ),(H, \circ))$ and GHom $((H, \circ),(H, \circ))$ respectively. For $f \in \operatorname{Hom}\left(\left(H_{1}, \circ\right),\left(H_{2}, *\right)\right), f$ is called an epimorphism if $f\left(H_{1}\right)=H_{2}$. We denote $\operatorname{Epi}\left(\left(H_{1}, \circ\right),\left(H_{2}, *\right)\right)$ and $\operatorname{GEpi}\left(\left(H_{1}, \circ\right),\left(H_{2}, *\right)\right)$ for the set of all epimorphisms and the set of all good epimorphisms from $\left(H_{1}, \circ\right)$ into $\left(H_{2}, *\right)$, respectively. Let Epi (H, \circ), $\operatorname{GEpi}(H, \circ)$ stand for $\operatorname{Epi}((H, \circ),(H, \circ))$ and $\operatorname{GEpi}((H, \circ),(H, \circ))$ respectively.

Example 1.1. [2] Let G be a group and N a normal subgroup of G. If \circ_{N} is the hyperoperation defined on G by

$$
x \circ_{N} y=x y N \quad \text { for all } x, y \in G,
$$

then $\left(G, \circ_{N}\right)$ is a hypergroup.
Example 1.2. [2] Let G be a group. For $x, y \in G$, define

$$
x \circ y=<x, y>\text {, the subgroup of } G \text { generated by } x \text { and } y \text {, }
$$

then (G, \circ) is a hypergroup. Note that if $(A,+)$ is an abelian group, then $x \circ y=\mathbb{Z} x+\mathbb{Z y}$ for all $x, y \in A$.

Let U be an initial universe set and E be a set of parameters. The power set of U is denoted by $P(U)$ and A is a subset of E.

A pair (F, A) is called a soft set over U, where F is a mapping given by

$$
F: A \rightarrow P(U)
$$

The set $\operatorname{Supp}(F, A)=\{x \in A \mid F(x) \neq \varnothing\}$ is called the support of the soft set (F, A). If $\operatorname{Supp}(F, A) \neq \varnothing$, then a soft set (F, A) is called non-null.

Let (F, A) and (G, B) be two soft sets over U and U^{\prime} respectively, $f: U \rightarrow U^{\prime}, g: A \rightarrow B$ be two functions. Then we say that pair (f, g) is a soft function from (F, A) to (G, B) denoted by $(f, g):(F, A) \rightarrow(G, B)$ if it satisfies

$$
f(F(x))=G(g(x))
$$

for all $x \in A$. If f and g are injective (resp. surjective, bijective), then (f, g) is said to be injective (resp. surjective, bijective).

Example 1.3. [1] Let us consider a soft set (F, E) which describes the "attractiveness of houses" that Mr. X is considering for purchase.

Suppose that there are six houses in the universe $U=\left\{h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}\right\}$ under consideration, and that $E=\left\{e_{l}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ is a set of decision parameters. The $e_{i}(i=$ $1,2,3,4,5)$ stand for the parameters "expensive", "beautiful", "wooden", "cheap" and "in green surroundings" respectively.

Consider the mapping F given by "houses $(*)$ ", where (*) is to be filled in by one of the parameters $e_{i} \in E$. For instance, $F\left(e_{1}\right)$ means "houses(expensive)", and its functional value is the set $\{h \in U: h$ is an expensive house $\}$.

Suppose that $F\left(e_{1}\right)=\left\{h_{2}, h_{4}\right\}, F\left(e_{2}\right)=\left\{h_{1}, h_{3}\right\}, F\left(e_{3}\right)=\varnothing, F\left(e_{4}\right)=\left\{h_{1}, h_{3}, h_{5}\right\}$ and $F\left(e_{5}\right)=\left\{h_{1}\right\}$. Then we can view the soft set (F, E) as consisting of the following collection of approximations:

$$
\begin{aligned}
(F, E)= & \left\{\left(\text { expensive houses, }\left\{h_{2}, h_{4}\right\}\right),\left(\text { beautiful houses, }\left\{h_{1}, h_{3}\right\}\right),(\text { wooden houses, } \varnothing),\right. \\
& \left.\left(\text { cheap houses, }\left\{h_{1}, h_{3}, h_{5}\right\}\right),\left(\text { in the green surroundings, }\left\{h_{1}\right\}\right)\right\} .
\end{aligned}
$$

Each approximation has two parts: a predicate and an approximate value set.

2 Preliminaries

2.1 Hypergroups

From Example 1.1, let $(\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)$ be groups and $m \mathbb{Z}, m \mathbb{Z}_{n}$ are subgroups of $(\mathbb{Z},+),\left(\mathbb{Z}_{n},+\right)$, respectively. Then $\left(\mathbb{Z}, o_{m \mathbb{Z}}\right)$ and $\left(\mathbb{Z}_{n}, o_{m \mathbb{Z}_{n}}\right)$ are the hypergroups where

$$
\begin{aligned}
x \circ_{m \mathbb{Z}} y & =x+y+m \mathbb{Z} \\
\bar{x} \circ_{m \mathbb{Z}_{n}} \bar{y}=\bar{x}+\bar{y}+m \mathbb{Z}_{n} & \forall x, y \in \mathbb{Z} \\
& \forall x, y \in \mathbb{Z} .
\end{aligned}
$$

Theorem 2.1. [4] For $f: \mathbb{Z} \rightarrow \mathbb{Z}$, the following statements are equivalent:
(i) $f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{m \mathbb{Z}}\right)$.
(ii) $f(x+m \mathbb{Z}) \subseteq x f(1)+m \mathbb{Z}$ for all $x \in \mathbb{Z}$.
(iii) There exists an integer a such that

$$
f(x+m \mathbb{Z}) \subseteq x a+m \mathbb{Z}
$$

Theorem 2.2. [4] For $f: \mathbb{Z} \rightarrow \mathbb{Z}, f \in \operatorname{Epi}\left(\mathbb{Z}, \circ_{m \mathbb{Z}}\right)$ if and only if
(i) $f(x+m \mathbb{Z})=x f(1)+m \mathbb{Z}$ for all $x \in \mathbb{Z}$ and
(ii) $f(1)$ and m are relatively prime.

Theorem 2.3. [4] For $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$, the following statements are equivalent:
(i) $f \in \operatorname{Hom}\left(\mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right)$.
(ii) $f\left(\bar{x}+m \mathbb{Z}_{n}\right) \subseteq x f(\overline{1})+m \mathbb{Z}_{n}$ for all $x \in \mathbb{Z}$.
(iii) There exists an integer a such that

$$
f\left(\bar{x}+m \mathbb{Z}_{n}\right) \subseteq x \bar{a}+m \mathbb{Z}_{n}
$$

Theorem 2.4. [4] For $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}, f \in \operatorname{Epi}\left(\mathbb{Z}_{n}, \mathrm{o}_{m \mathbb{Z}_{n}}\right)$ if and only if
(i) $f\left(\bar{x}+m \mathbb{Z}_{n}\right)=x f(\overline{1})+m \mathbb{Z}_{n}$ for all $x \in \mathbb{Z}$ and
(ii) If $f(\overline{1})=\bar{a}$ for $a \in \mathbb{Z}$, then a and (m, n) are relatively prime.

2.2 Soft Hypergroup

Let (F, A) be a non-null soft set over H. Then (F, A) is called a soft hypergroup over H if $F(x)$ is a subhypergroup of H for all $x \in \operatorname{Supp}(F, A)$.

Let (F, A) and (G, B) be two non-empty soft hypergroupoids over H_{1} and H_{2}, respectively. Let (f, g) be a soft function from (F, A) to (G, B). If f is an inclusion (resp. good) homomorphism from H_{1} to H_{2}, then (f, g) is said to be a soft inclusion (resp. good) homomorphism of hypergroupoids.

For soft hypergroups (F, A) and (G, B) over H_{1} and H_{2} respectively. Denote the set of all soft inclusion homomorphisms and the set of all soft good homomorphisms from (F, A) to (G, B) by $\operatorname{SfHom}\left((F, A)_{\left(H_{1}, \circ\right)},(G, B)_{\left(H_{2}, *\right)}\right)$ and $\operatorname{SfGHom}\left((F, A)_{\left(H_{1}, \circ\right)},(G, B)_{\left(H_{2}, *\right)}\right)$, respectively. Let $\operatorname{SfHom}((F, A),(G, B))_{(H, \circ)}$ and $\operatorname{SfGHom}((F, A),(G, B))_{(H, \circ)}$ stand for $\operatorname{SfHom}\left((F, H)_{(H, \circ)},(G, H)_{(H, \circ)}\right)$ and $\operatorname{SfGHom}\left((F, H)_{(H, \circ)},(G, H)_{(H, \mathrm{o})}\right)$ respectively.

$2.3 k$-Soft Hypergroup and k_{n}-Soft Hypergroup

For $m \in \mathbb{Z}^{+}$. Let $F: \mathbb{Z} \rightarrow P(\mathbb{Z})$ be a mapping given by

$$
F(x)= \begin{cases}x \mathbb{Z} & x \mid m \\ \mathbb{Z} & x \nmid m\end{cases}
$$

Then (F, \mathbb{Z}) is a soft set over \mathbb{Z}. Since $F(x) \neq \varnothing$ for all $x \in \mathbb{Z}$, then $\operatorname{Supp}(F, \mathbb{Z}) \neq \varnothing$. Hence (F, \mathbb{Z}) is a non-null.

Proposition 3.1 and 3.2 are shown that $\left(k \mathbb{Z}, \circ_{m \mathbb{Z}}\right),\left(k \mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right)$ are subhypergroups of $\left(\mathbb{Z}, \circ_{m \mathbb{Z}}\right),\left(\mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right)$ respectively. For a hypergroup $\left(\mathbb{Z}, o_{m \mathbb{Z}}\right)$. If $k \mid m$, then $\left(F_{k}, \mathbb{Z}\right)$ is called a k-soft hypergroup over \mathbb{Z} where $F_{k}: \mathbb{Z} \rightarrow P(\mathbb{Z})$ defined by

$$
F_{k}(x)= \begin{cases}k \mathbb{Z} & x \mid m \\ \mathbb{Z} & x \nmid m .\end{cases}
$$

For a hypergroup $\left(\mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right)$. If $(k, n) \mid(m, n)$, then $\left(F_{k}, \mathbb{Z}_{n}\right)$ is called a k_{n}-soft hypergroup over \mathbb{Z}_{n} where $F_{k}: \mathbb{Z}_{n} \rightarrow P\left(\mathbb{Z}_{n}\right)$ defined by

$$
F_{k}(x)= \begin{cases}k \mathbb{Z}_{n} & (x, n) \mid(m, n) \\ \mathbb{Z}_{n} & (x, n) \nmid(m, n) .\end{cases}
$$

3 Main Results

Throughout this Section, let $\left(\mathbb{Z}, \circ_{m \mathbb{Z}}\right)$ and $\left(\mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right)$ be hypergroups, $\left(F_{k}, \mathbb{Z}\right)$ and $\left(G_{k}, \mathbb{Z}\right)$ be k-soft hypergroups over \mathbb{Z} and $\left(F_{k}, \mathbb{Z}_{n}\right)$ and $\left(G_{k}, \mathbb{Z}_{n}\right)$ be k_{n}-soft hypergroups over \mathbb{Z}_{n}.
Proposition 3.1. For $m \in \mathbb{Z}^{+}$, if $k \mid m$ then $\left(k \mathbb{Z}, \circ_{m \mathbb{Z}}\right)$ is a subhypergroup of $\left(\mathbb{Z}, \circ_{m \mathbb{Z}}\right)$.
Proof. Since $k \mid m$ then $m \mathbb{Z} \leq k \mathbb{Z}$. Thus for every $x \in k \mathbb{Z}$,

$$
\begin{aligned}
k \mathbb{Z} \circ_{m \mathbb{Z}} x & =\bigcup_{t \in k \mathbb{Z}}\left(t o_{m \mathbb{Z}} x\right) \\
& =\bigcup_{t \in k \mathbb{Z}}(t+x+m \mathbb{Z}) \\
& =k \mathbb{Z}+x+m \mathbb{Z}=k \mathbb{Z}
\end{aligned}
$$

Similarly, $x \circ_{m \mathbb{Z}} k \mathbb{Z}=k \mathbb{Z}$.
Hence $\left(k \mathbb{Z}, o_{m \mathbb{Z}}\right)$ is a subhypergroup of $\left(\mathbb{Z}, \mathrm{o}_{m \mathbb{Z}}\right)$.
Proposition 3.2. For $m, n \in \mathbb{Z}^{+}$, if $(k, n) \mid(m, n)$ then $\left(k \mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right)$ is a subhypergroup of $\left(\mathbb{Z}_{n}, o_{m \mathbb{Z}_{n}}\right)$.
Proof. Since $(k, n) \mid(m, n)$ then $m \mathbb{Z}_{n} \leq k \mathbb{Z}_{n}$. Thus for every $\bar{x} \in k \mathbb{Z}_{n}$

$$
\begin{aligned}
k \mathbb{Z} \circ_{m \mathbb{Z}_{n}} \bar{x} & =\bigcup_{\bar{t} \in k \mathbb{Z}}\left(\bar{t} \circ_{m \mathbb{Z}_{n}} \bar{x}\right) \\
& =\bigcup_{\bar{t} \in k \mathbb{Z}}\left(\bar{t}+\bar{x}+m \mathbb{Z}_{n}\right) \\
& =k \mathbb{Z}_{n}+\bar{x}+m \mathbb{Z}_{n}=k \mathbb{Z}_{n}
\end{aligned}
$$

Similarly, $\bar{x} \circ_{m \mathbb{Z}_{n}} k \mathbb{Z}_{n}=k \mathbb{Z}_{n}$.
Hence $\left(k \mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right)$ is a subhypergroup of $\left(\mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right)$.
Theorem 3.3. For $m, k \in \mathbb{Z}^{+}$and $k \mid m$. If $f \in \operatorname{Hom}\left(\mathbb{Z}, o_{m \mathbb{Z}}\right)$, then $f(x+m \mathbb{Z}) \subseteq k \mathbb{Z}$ for all $x \in k \mathbb{Z}$.

Proof. Assume $f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{m \mathbb{Z}}\right)$ and $k \mid m$. Then $m=k s$ for some $s \in \mathbb{Z}$. Let $x \in k \mathbb{Z}$. Then $x=k t$ for some $t \in \mathbb{Z}$. Since $f(a+m \mathbb{Z}) \subseteq a f(1)+m \mathbb{Z}$ for all $a \in \mathbb{Z}$,

$$
\begin{aligned}
f(x+m \mathbb{Z}) & \subseteq x f(1)+m \mathbb{Z} \\
& =k t f(1)+(k s) \mathbb{Z} \\
& \subseteq k t f(1)+k \mathbb{Z} \\
& \subseteq k \mathbb{Z}
\end{aligned}
$$

Corollary 3.4. For $n, m, k \in \mathbb{Z}^{+}$and $(k, n) \mid(m, n)$. If $f \in \operatorname{Hom}\left(\mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right)$, then $f\left(\bar{x}+m \mathbb{Z}_{n}\right) \subseteq k \mathbb{Z}_{n}$ for all $\bar{x} \in k \mathbb{Z}_{n}$.

Theorem 3.5. For $m, k \in \mathbb{Z}^{+}$and $k \mid m$. Then

$$
k \mathbb{Z}=(1 \cdot k+m \mathbb{Z}) \cup \ldots \cup(a k+m \mathbb{Z})=\bigcup_{i=1}^{a}(i k+m \mathbb{Z})
$$

where $a k=m$.

Proof. Since $k \mid m$ and $m, k \in \mathbb{Z}^{+}$, $a k=m$ for some $a \in \mathbb{Z}^{+}$. For $x \in \mathbb{Z}$, by the Division Algorithm, $x=a q+r$ for some $q, r \in \mathbb{Z}$ and $0 \leq r<a$. Then

$$
\begin{aligned}
k x & =k(a q+r) \\
& =k a q+r k \\
& =m q+r k \in r k+m \mathbb{Z}
\end{aligned}
$$

Therefore $k \mathbb{Z} \subseteq \bigcup_{i=1}^{a}(i k+m \mathbb{Z})$.
For $i=1, \ldots a$, let $y \in i k+m \mathbb{Z}$. Then $y=i k+m t$ for some $t \in \mathbb{Z}$. Thus

$$
y=i k+a k t=k(i+a t) \in k \mathbb{Z}
$$

so $i k+m \mathbb{Z} \subseteq k \mathbb{Z}$. Therefore $\bigcup_{i=1}^{a}(i k+m \mathbb{Z}) \subseteq k \mathbb{Z}$.
Hence $k \mathbb{Z}=\bigcup_{i=1}^{a}(i k+m \mathbb{Z})$.
Corollary 3.6. For $n, m, k \in \mathbb{Z}^{+}$and $(k, n) \mid(m, n)$. Then

$$
k \mathbb{Z}_{n}=(1 \cdot \bar{k}+m \mathbb{Z}) \cup \ldots \cup\left(a \bar{k}+m \mathbb{Z}_{n}\right)=\bigcup_{i=1}^{a}\left(i \bar{k}+m \mathbb{Z}_{n}\right)
$$

where $a(k, n)=n$.
Theorem 3.7. For $m, k \in \mathbb{Z}^{+}, k \mid m$ and $f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{m \mathbb{Z}}\right)$. If g is an identity mapping, then $(f, g) \in \operatorname{SfHom}\left(\left(F_{k}, \mathbb{Z}\right),\left(G_{k}, \mathbb{Z}\right)\right)_{\left(\mathbb{Z}, \mathrm{o}_{m \mathbb{Z}}\right)}$ if and only if $f(1)$ and m are relatively prime and $x f(1)+m \mathbb{Z} \subseteq f(x+m \mathbb{Z})$ for $x=1, \ldots, m$.

Proof. Let g be an identity map and $f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{m \mathbb{Z}}\right)$.
Assume that $(f, g) \in \operatorname{SfHom}\left(\left(F_{k}, \mathbb{Z}\right),\left(G_{k}, \mathbb{Z}\right)\right)_{\left(\mathbb{Z}, o_{m \mathbb{Z}}\right)}$. So $f(\mathbb{Z})=\mathbb{Z}$. Hence f is onto. By Theorem 2.2, $f(1)$ and m are relatively prime and $x f(1)+m \mathbb{Z} \subseteq f(x+m \mathbb{Z})$ for $x=$ $1, \ldots, m$.

Conversely, assume that $f(1)$ and m are relatively prime and $x f(1)+m \mathbb{Z} \subseteq f(x+m \mathbb{Z})$ for $x=1, \ldots, m$, we will show that $f\left(F_{k}(x)\right)=G_{k}(g(x))$ for all $x \in \mathbb{Z}$.
If $F_{k}(x)=\mathbb{Z}$. By Theorem 2.2, $f(\mathbb{Z})=\mathbb{Z}$.
If $F_{k}(x)=k \mathbb{Z}$. Then

$$
\begin{aligned}
f(k \mathbb{Z}) & =f\left(\bigcup_{i=1}^{a}(i k+m \mathbb{Z})\right) \\
& =\bigcup_{i=1}^{a} f(i k+m \mathbb{Z}) \quad \quad \text { (by Theorem 3.5) } \\
& =\bigcup_{i=1}^{a}(i k f(1)+m \mathbb{Z}) \quad \text { by } f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{m \mathbb{Z}}\right) \text { and } x f(1)+m \mathbb{Z} \subseteq f(x+m \mathbb{Z})
\end{aligned}
$$

Since $f(1)$ and m are relatively prime, $i f(1)+m \mathbb{Z} \neq j f(1)+m \mathbb{Z}$ for $i \neq j$. By Theorem 3.3, that is $f(x+m \mathbb{Z}) \subseteq k \mathbb{Z}$ for all $x \in k \mathbb{Z}$. We have $f(k \mathbb{Z})=\bigcup_{i=1}(i k f(1)+m \mathbb{Z})=k \mathbb{Z}$. Therefore $(f, g) \in \operatorname{SfHom}\left(\left(F_{k}, \mathbb{Z}\right),\left(G_{k}, \mathbb{Z}\right)\right)_{\left(\mathbb{Z}, o_{m \mathbb{Z}}\right)}$.

Corollary 3.8. For an identity mapping g,

$$
f \in \operatorname{Epi}\left(\mathbb{Z}, \circ_{m \mathbb{Z}}\right) \text { if and only if }(f, g) \in \operatorname{SfHom}\left(\left(F_{k}, \mathbb{Z}\right),\left(G_{k}, \mathbb{Z}\right)\right)_{\left(\mathbb{Z}, \mathrm{o}_{m \mathbb{Z}}\right)}
$$

Theorem 3.9. For $m, k, n \in \mathbb{Z}^{+},(k, n) \mid(m, n)$ and $f \in \operatorname{Hom}\left(\mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right)$. If g is an identity mapping, then $(f, g) \in \operatorname{SfHom}\left(\left(F_{k}, \mathbb{Z}_{n}\right),\left(G_{k}, \mathbb{Z}_{n}\right)\right)_{\left(\mathbb{Z}_{n}, \mathrm{o}_{m \mathbb{Z}_{n}}\right)}$ if and only if $f(\overline{1})$ and (m, n) are relatively prime and $x f(\overline{1})+m \mathbb{Z}_{n} \subseteq f\left(\bar{x}+m \mathbb{Z}_{n}\right)$ for $x=1, \ldots, \frac{n}{(m, n)}$.
Proof. Let g be an identity map and $f \in \operatorname{Hom}\left(\mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right)$.
Assume that $(f, g) \in \operatorname{SfHom}\left(\left(F_{k}, \mathbb{Z}_{n}\right),\left(G_{k}, \mathbb{Z}_{n}\right)\right)_{\left(\mathbb{Z}_{n}, \mathrm{o}_{m \mathbb{Z}_{n}}\right)}$. So $f\left(\mathbb{Z}_{n}\right)=\mathbb{Z}_{\underline{n}}$. Hence f is an onto. By Theorem 2.4, $f(\overline{1})$ and (m, n) are relatively prime and $x f(\overline{1})+m \mathbb{Z}_{n} \subseteq$ $f\left(\bar{x}+m \mathbb{Z}_{n}\right)$ for $x=1, \ldots, \frac{n}{(m, n)}$.

Conversely, assume that $f(\overline{1})$ and (m, n) are relatively prime and $x f(\overline{1})+m \mathbb{Z}_{n} \subseteq f(\bar{x}+$ $\left.m \mathbb{Z}_{n}\right)$ for $x=1, \ldots, \frac{n}{(m, n)}$, we will show that $f\left(F_{k}(x)\right)=G_{k}(g(x))$ for all $x \in \mathbb{Z}$. If $F_{k}(x)=\mathbb{Z}_{n}$. By Theorem 2.4, $f\left(\mathbb{Z}_{n}\right)=\mathbb{Z}_{n}$. If $F_{k}(x)=k \mathbb{Z}_{n}$. Then

$$
\begin{aligned}
f\left(k \mathbb{Z}_{n}\right) & =f\left(\bigcup_{i=1}^{a}\left(i \bar{k}+m \mathbb{Z}_{n}\right)\right) \\
& =\bigcup_{i=1}^{a} f\left(\overline{i k}+m \mathbb{Z}_{n}\right) \\
& =\bigcup_{i=1}^{a}\left(i \bar{k} f(\overline{1})+m \mathbb{Z}_{n}\right) \quad \text { by } f \in \operatorname{Hom}\left(\mathbb{Z}, o_{m \mathbb{Z}_{n}}\right) \text { and } x f(\overline{1})+m \mathbb{Z}_{n} \subseteq f\left(\bar{x}+m \mathbb{Z}_{n}\right) .
\end{aligned}
$$

Since $f(\overline{1})$ and (m, n) are relatively prime, $i f(\overline{1})+m \mathbb{Z}_{n} \neq j f(\overline{1})+m \mathbb{Z}_{n}$ for $i \neq j$. By Corollary 3.4, that is $f\left(\bar{x}+m \mathbb{Z}_{n}\right) \subseteq k \mathbb{Z}_{n}$ for all $\bar{x} \in k \mathbb{Z}_{n}$. We have $f\left(k \mathbb{Z}_{n}\right)=\bigcup_{i=1}^{a}\left(i k f(\overline{1})+m \mathbb{Z}_{n}\right)=k \mathbb{Z}_{n}$.
Therefore $(f, g) \in \operatorname{SfHom}\left(\left(F_{k}, \mathbb{Z}_{n}\right),\left(G_{k}, \mathbb{Z}_{n}\right)\right)_{\left(\mathbb{Z}_{n}, \mathrm{o}_{m \mathbb{Z}_{n}}\right)}$.
Corollary 3.10. For an identity mapping g,

$$
f \in \operatorname{Epi}\left(\mathbb{Z}_{n}, \circ_{m \mathbb{Z}_{n}}\right) \text { if and only if }(f, g) \in \operatorname{SfHom}\left(\left(F_{k}, \mathbb{Z}_{n}\right),\left(G_{k}, \mathbb{Z}_{n}\right)\right)_{\left(\mathbb{Z}_{n}, \mathrm{o}_{m \mathbb{Z}_{n}}\right)}
$$

Example 3.11. Consider $m=12, f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{12 \mathbb{Z}}\right)$ so (f, g) is a soft inclusion homomorphism from $\left(F_{4}, \mathbb{Z}\right)$ into $\left(G_{4}, \mathbb{Z}\right)$ where $f(1)=5,5 x+12 \mathbb{Z} \subseteq f(x+12 \mathbb{Z})$ and g is an identity map.

If $5 x+12 \mathbb{Z} \nsubseteq f(x+12 \mathbb{Z})$ then $f(x+12 \mathbb{Z}) \neq 5 x+12 \mathbb{Z}$. So

$$
\begin{aligned}
f(4 \mathbb{Z}) & =f\left(\bigcup_{i=1}^{3}(4 i+12 \mathbb{Z})\right) \\
& =\bigcup_{i=1}^{3} f(4 i+12 \mathbb{Z}) \\
& \neq \bigcup_{i=1}^{3}(4 i f(1)+12 \mathbb{Z}) \\
& =(8+12 \mathbb{Z}) \cup(4+12 \mathbb{Z}) \cup(12 \mathbb{Z})=4 \mathbb{Z}
\end{aligned}
$$

Hence $f(4 \mathbb{Z}) \neq 4 \mathbb{Z}$ and $(f, g) \notin \operatorname{SfHom}\left(\left(F_{4}, \mathbb{Z}\right),\left(G_{4}, \mathbb{Z}\right)\right)_{\left(\mathbb{Z}, \mathrm{o}_{12 \mathbb{Z}}\right)}$.

$$
\text { If } f(1)=3 \text { then } f(\mathbb{Z}) \neq \mathbb{Z} \text { since } \mathbb{Z}=\bigcup_{i=1}^{11}(i+12 \mathbb{Z})
$$

$$
\begin{aligned}
f(\mathbb{Z}) & =f\left(\bigcup_{i=1}^{11}(i+12 \mathbb{Z})\right) \\
& =\bigcup_{i=1}^{11} f(i+12 \mathbb{Z}) \\
& =\bigcup_{i=1}^{11}(i f(1)+12 \mathbb{Z}) \\
& =(3+12 \mathbb{Z}) \cup(6+12 \mathbb{Z}) \cup(9+12 \mathbb{Z}) \cup(12 \mathbb{Z}) \neq \mathbb{Z}
\end{aligned}
$$

Hence $(f, g) \notin \operatorname{SfHom}\left(\left(F_{4}, \mathbb{Z}\right),\left(G_{4}, \mathbb{Z}\right)\right)_{\left(\mathbb{Z}, \mathrm{o}_{12 \mathbb{Z}}\right)}$.
In conclusion, we will see that soft homomorphisms on $\left(\mathbb{Z}, o_{m \mathbb{Z}}\right)$ preserves k-soft hypergroups that is the following corollary.

Corollary 3.12. For $m \in \mathbb{Z}^{+}$and g is an identity mapping. If $(f, g) \in \operatorname{SfHom}\left(\left(F_{k}, \mathbb{Z}\right),\left(G_{l}, \mathbb{Z}\right)\right)_{\left(\mathbb{Z}, \mathrm{o}_{m \mathbb{Z}}\right)}$, then $k=l$.

Acknowledgement(s) : I would like to thank the referee(s) for comments and suggestions on the manuscript. This work was supported by the National Research Council of Thailand and Mathematical Association of Thailand.

References

[1] D. Molodtsov, Soft set theory first results, Computers and Mathematics with Applications, 37 (1999), 19-31.
[2] P. Corsini, Prolegomena of Hypergroup Theory. Udine: Aviani Editore, 1993.
[3] S. Yamak, O. Kacanzi and B. Davvaz, Soft hyperstructure, Computers and Mathematics with Applications, 62 (2011), 797-803.
[4] Witthawas Phanthawimol, Homomorphisms of Some Hypergroups, Doctoral Dissertation, Chulalongkorn University (2010).

[^0]: ${ }^{*}$ Corresponding author e-mail : dreeard@yahoo.com

