Proceedings of 19th Annual Meeting in Mathematics (AMM2014) Thammasat University, Rangsit Center, Pathum Thani, Thailand, March 20-22, 2014

Soft Homomorphisms of k-Soft Hypergroups

W. Phanthawimol¹ and P. Yoosomran^{2,*}

¹Department of Mathematics, Faculty of Sciences Ramkhamhaeng University, Bangkok 10240, THAILAND golfma35@yahoo.com ²Department of Mathematics, Faculty of Sciences Ramkhamhaeng University, Bangkok 10240, THAILAND fscipsy@ku.ac.th

Abstract : Soft set theory was introduced by Molodtsov in 1999 as a general mathematical tool for dealing with problems that contain uncertainity. In this paper, we provide a definition of *k*-soft hypergroups and study some properties of homomorphisms of hypergroups $(\mathbb{Z}, \circ_{m\mathbb{Z}})$ and $(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$ that induce soft homomorphisms on *k*-soft hypergroup and k_n -soft hypergroup.

Keywords : hyperstructure; soft set; soft hypergroup; soft homomorphism. **2010 Mathematics Subject Classification :** 20N20

1 Introduction

The set of integers, the set of rational numbers and the set of real numbers are denoted by \mathbb{Z} , \mathbb{Q} and \mathbb{R} , respectively.

A hyperoperation on a non-empty set *H* is a function $\circ : H \times H \to P(H) \setminus \{\emptyset\}$ where P(H) is the power set of *H*. The value of $(x, y) \in H \times H$ under \circ is denoted by $x \circ y$ which is called the *hyperproduct* of *x* and *y*. The system (H, \circ) is called a *hypergroupoid*. For $A, B \subseteq H$ and $x \in H$, let

$$A \circ B = \bigcup_{\substack{a \in A \\ b \in B}} a \circ b, \ A \circ x = A \circ \{x\} \text{ and } x \circ A = \{x\} \circ A.$$

The hypergroupoid (H, \circ) is called a *semihypergroup* if

$$(x \circ y) \circ z = x \circ (y \circ z)$$
 for all $x, y, z \in H$.

A hypergroup is a semihypergroup (H, \circ) satisfying the condition

$$H \circ x = x \circ H = H$$
 for all $x \in H$.

Then hypergroups are a generalization of groups.

Let (H, \circ) be a hypergroup and K be a non-empty subset of H, then K is called a *subhypergroup* if (K, \circ) is a hypergroup.

^{*}Corresponding author e-mail : dreeard@yahoo.com

Copyright © 2014 by the AMM2014. All rights reserved.

Let (H_1, \circ) and $(H_2, *)$ be two hypergroupoids. The map $f : H_1 \to H_2$ is called a *good* homomorphism if for all $x, y \in H_1$ the following relation holds: $f(x \circ y) = f(x) * f(y)$ and is called an *(inclusion)* homomorphism if $f(x \circ y) \subseteq f(x) * f(y)$.

We denoted Hom $((H_1, \circ), (H_2, *))$, GHom $((H_1, \circ), (H_2, *))$, the set of all (inclusion) homomorphism and the set of all good homomorphism from (H_1, \circ) into $(H_2, *)$, respectively. Let Hom (H, \circ) , GHom (H, \circ) stand for Hom $((H, \circ), (H, \circ))$ and GHom $((H, \circ), (H, \circ))$ respectively. For $f \in$ Hom $((H_1, \circ), (H_2, *))$, f is called an epimorphism if $f(H_1) = H_2$. We denote Epi $((H_1, \circ), (H_2, *))$ and GEpi $((H_1, \circ), (H_2, *))$ for the set of all epimorphisms and the set of all good epimorphisms from (H_1, \circ) into $(H_2, *)$, respectively. Let Epi (H, \circ) , GEpi (H, \circ) stand for Epi $((H, \circ), (H, \circ))$ and GEpi $((H, \circ), (H, \circ))$ respectively.

Example 1.1. [2] Let G be a group and N a normal subgroup of G. If \circ_N is the hyperoperation defined on G by

 $x \circ_N y = xyN$ for all $x, y \in G$,

then (G, \circ_N) is a hypergroup.

Example 1.2. [2] Let G be a group. For $x, y \in G$, define

 $x \circ y = \langle x, y \rangle$, the subgroup of *G* generated by *x* and *y*,

then (G, \circ) is a hypergroup. Note that if (A, +) is an abelian group, then $x \circ y = \mathbb{Z}x + \mathbb{Z}y$ for all $x, y \in A$.

Let U be an initial universe set and E be a set of parameters. The power set of U is denoted by P(U) and A is a subset of E.

A pair (F,A) is called a *soft set* over U, where F is a mapping given by

$$F: A \to P(U).$$

The set $Supp(F,A) = \{x \in A | F(x) \neq \emptyset\}$ is called the *support* of the soft set (F,A). If $Supp(F,A) \neq \emptyset$, then a soft set (F,A) is called *non-null*.

Let (F,A) and (G,B) be two soft sets over U and U' respectively, $f: U \to U', g: A \to B$ be two functions. Then we say that pair (f,g) is a *soft function* from (F,A) to (G,B)denoted by $(f,g): (F,A) \to (G,B)$ if it satisfies

$$f(F(x)) = G(g(x))$$

for all $x \in A$. If f and g are injective (resp. surjective, bijective), then (f,g) is said to be injective (resp. surjective, bijective).

Example 1.3. [1] Let us consider a soft set (F, E) which describes the "attractiveness of houses" that Mr. X is considering for purchase.

Suppose that there are six houses in the universe $U = \{h_l, h_2, h_3, h_4, h_5, h_6\}$ under consideration, and that $E = \{e_l, e_2, e_3, e_4, e_5\}$ is a set of decision parameters. The $e_i(i = 1, 2, 3, 4, 5)$ stand for the parameters "expensive", "beautiful", "wooden", "cheap" and "in green surroundings" respectively.

Consider the mapping F given by "houses(*)", where (*) is to be filled in by one of the parameters $e_i \in E$. For instance, $F(e_1)$ means "houses(expensive)", and its functional value is the set $\{h \in U : h \text{ is an expensive house}\}$.

Suppose that $F(e_1) = \{h_2, h_4\}$, $F(e_2) = \{h_1, h_3\}$, $F(e_3) = \emptyset$, $F(e_4) = \{h_1, h_3, h_5\}$ and $F(e_5) = \{h_1\}$. Then we can view the soft set (F, E) as consisting of the following collection of approximations:

 $(F,E) = \{(expensive houses, \{h_2, h_4\}), (beautiful houses, \{h_1, h_3\}), (wooden houses, \varnothing), (cheap houses, \{h_1, h_3, h_5\}), (in the green surroundings, \{h_1\})\}.$

Each approximation has two parts: a predicate and an approximate value set.

2 Preliminaries

2.1 Hypergroups

From Example 1.1, let $(\mathbb{Z}, +), (\mathbb{Z}_n, +)$ be groups and $m\mathbb{Z}, m\mathbb{Z}_n$ are subgroups of $(\mathbb{Z}, +), (\mathbb{Z}_n, +)$, respectively. Then $(\mathbb{Z}, \circ_m\mathbb{Z})$ and $(\mathbb{Z}_n, \circ_m\mathbb{Z}_n)$ are the hypergroups where

$$\begin{aligned} x \circ_{m\mathbb{Z}} y &= x + y + m\mathbb{Z} \quad \forall x, y \in \mathbb{Z} \\ \overline{x} \circ_{m\mathbb{Z}_n} \overline{y} &= \overline{x} + \overline{y} + m\mathbb{Z}_n \quad \forall x, y \in \mathbb{Z}. \end{aligned}$$

Theorem 2.1. [4] For $f : \mathbb{Z} \to \mathbb{Z}$, the following statements are equivalent:

- (i) $f \in \operatorname{Hom}(\mathbb{Z}, \circ_{m\mathbb{Z}}).$
- (ii) $f(x+m\mathbb{Z}) \subseteq xf(1) + m\mathbb{Z}$ for all $x \in \mathbb{Z}$.
- (iii) There exists an integer a such that

$$f(x+m\mathbb{Z})\subseteq xa+m\mathbb{Z}.$$

Theorem 2.2. [4] For $f : \mathbb{Z} \to \mathbb{Z}$, $f \in \operatorname{Epi}(\mathbb{Z}, \circ_{m\mathbb{Z}})$ if and only if

- (i) $f(x+m\mathbb{Z}) = xf(1) + m\mathbb{Z}$ for all $x \in \mathbb{Z}$ and
- (ii) f(1) and m are relatively prime.

Theorem 2.3. [4] For $f : \mathbb{Z}_n \to \mathbb{Z}_n$, the following statements are equivalent:

- (*i*) $f \in \operatorname{Hom}(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$.
- (*ii*) $f(\overline{x} + m\mathbb{Z}_n) \subseteq xf(\overline{1}) + m\mathbb{Z}_n$ for all $x \in \mathbb{Z}$.
- (iii) There exists an integer a such that

$$f(\overline{x} + m\mathbb{Z}_n) \subseteq x\overline{a} + m\mathbb{Z}_n.$$

Theorem 2.4. [4] For $f : \mathbb{Z}_n \to \mathbb{Z}_n$, $f \in \operatorname{Epi}(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$ if and only if

(i)
$$f(\overline{x} + m\mathbb{Z}_n) = xf(1) + m\mathbb{Z}_n$$
 for all $x \in \mathbb{Z}$ and

(ii) If $f(\overline{1}) = \overline{a}$ for $a \in \mathbb{Z}$, then a and (m,n) are relatively prime.

2.2 Soft Hypergroup

Let (F,A) be a non-null soft set over H. Then (F,A) is called a *soft hypergroup* over H if F(x) is a subhypergroup of H for all $x \in Supp(F,A)$.

Let (F,A) and (G,B) be two non-empty soft hypergroupoids over H_1 and H_2 , respectively. Let (f,g) be a soft function from (F,A) to (G,B). If f is an inclusion (resp. good) homomorphism from H_1 to H_2 , then (f,g) is said to be a soft inclusion (resp. good) homomorphism of hypergroupoids.

For soft hypergroups (F,A) and (G,B) over H_1 and H_2 respectively. Denote the set of all soft inclusion homomorphisms and the set of all soft good homomorphisms from (F,A) to (G,B) by SfHom $((F,A)_{(H_1,\circ)}, (G,B)_{(H_2,*)})$ and SfGHom $((F,A)_{(H_1,\circ)}, (G,B)_{(H_2,*)})$, respectively. Let SfHom $((F,A), (G,B)_{(H,\circ)})$ and SfGHom $((F,A), (G,B)_{(H,\circ)})$ stand for SfHom $((F,H)_{(H,\circ)}, (G,H)_{(H,\circ)})$ and SfGHom $((F,H)_{(H,\circ)})$ respectively.

2.3 *k*-Soft Hypergroup and *k_n*-Soft Hypergroup

For $m \in \mathbb{Z}^+$. Let $F : \mathbb{Z} \to P(\mathbb{Z})$ be a mapping given by

$$F(x) = \begin{cases} x\mathbb{Z} & x|m\\ \mathbb{Z} & x \nmid m. \end{cases}$$

Then (F,\mathbb{Z}) is a soft set over \mathbb{Z} . Since $F(x) \neq \emptyset$ for all $x \in \mathbb{Z}$, then $Supp(F,\mathbb{Z}) \neq \emptyset$. Hence (F,\mathbb{Z}) is a non-null.

Proposition 3.1 and 3.2 are shown that $(k\mathbb{Z}, \circ_m\mathbb{Z}), (k\mathbb{Z}_n, \circ_m\mathbb{Z}_n)$ are subhypergroups of $(\mathbb{Z}, \circ_m\mathbb{Z}), (\mathbb{Z}_n, \circ_m\mathbb{Z}_n)$ respectively. For a hypergroup $(\mathbb{Z}, \circ_m\mathbb{Z})$. If k|m, then (F_k, \mathbb{Z}) is called a *k*-soft hypergroup over \mathbb{Z} where $F_k : \mathbb{Z} \to P(\mathbb{Z})$ defined by

$$F_k(x) = \begin{cases} k\mathbb{Z} & x \mid m \\ \mathbb{Z} & x \nmid m. \end{cases}$$

For a hypergroup $(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$. If (k, n)|(m, n), then (F_k, \mathbb{Z}_n) is called a k_n -soft hypergroup over \mathbb{Z}_n where $F_k : \mathbb{Z}_n \to P(\mathbb{Z}_n)$ defined by

$$F_k(x) = \begin{cases} k\mathbb{Z}_n & (x,n) \mid (m,n) \\ \mathbb{Z}_n & (x,n) \nmid (m,n) \end{cases}$$

Proceedings of AMM2014

3 Main Results

Throughout this Section, let $(\mathbb{Z}, \circ_{m\mathbb{Z}})$ and $(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$ be hypergroups, (F_k, \mathbb{Z}) and (G_k, \mathbb{Z}) be *k*-soft hypergroups over \mathbb{Z} and (F_k, \mathbb{Z}_n) and (G_k, \mathbb{Z}_n) be *k*_n-soft hypergroups over \mathbb{Z}_n .

Proposition 3.1. For $m \in \mathbb{Z}^+$, if $k \mid m$ then $(k\mathbb{Z}, \circ_{m\mathbb{Z}})$ is a subhypergroup of $(\mathbb{Z}, \circ_{m\mathbb{Z}})$.

Proof. Since k|m then $m\mathbb{Z} \leq k\mathbb{Z}$. Thus for every $x \in k\mathbb{Z}$,

$$k\mathbb{Z} \circ_{m\mathbb{Z}} x = \bigcup_{t \in k\mathbb{Z}} (t \circ_{m\mathbb{Z}} x)$$
$$= \bigcup_{t \in k\mathbb{Z}} (t + x + m\mathbb{Z})$$
$$= k\mathbb{Z} + x + m\mathbb{Z} = k\mathbb{Z}.$$

Similarly, $x \circ_{m\mathbb{Z}} k\mathbb{Z} = k\mathbb{Z}$.

Hence $(k\mathbb{Z}, \circ_{m\mathbb{Z}})$ is a subhypergroup of $(\mathbb{Z}, \circ_{m\mathbb{Z}})$.

Proposition 3.2. For $m, n \in \mathbb{Z}^+$, if (k, n)|(m, n) then $(k\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$ is a subhypergroup of $(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$.

Proof. Since (k,n)|(m,n) then $m\mathbb{Z}_n \leq k\mathbb{Z}_n$. Thus for every $\overline{x} \in k\mathbb{Z}_n$

$$k\mathbb{Z} \circ_{m\mathbb{Z}_n} \overline{x} = \bigcup_{\overline{t} \in k\mathbb{Z}} (\overline{t} \circ_{m\mathbb{Z}_n} \overline{x})$$
$$= \bigcup_{\overline{t} \in k\mathbb{Z}} (\overline{t} + \overline{x} + m\mathbb{Z}_n)$$
$$= k\mathbb{Z}_n + \overline{x} + m\mathbb{Z}_n = k\mathbb{Z}_n.$$

Similarly, $\overline{x} \circ_{m\mathbb{Z}_n} k\mathbb{Z}_n = k\mathbb{Z}_n$. Hence $(k\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$ is a subhypergroup of $(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$.

Theorem 3.3. For $m, k \in \mathbb{Z}^+$ and k | m. If $f \in \text{Hom}(\mathbb{Z}, \circ_{m\mathbb{Z}})$, then $f(x + m\mathbb{Z}) \subseteq k\mathbb{Z}$ for all $x \in k\mathbb{Z}$.

Proof. Assume $f \in \text{Hom}(\mathbb{Z}, \circ_{m\mathbb{Z}})$ and k|m. Then m = ks for some $s \in \mathbb{Z}$. Let $x \in k\mathbb{Z}$. Then x = kt for some $t \in \mathbb{Z}$. Since $f(a + m\mathbb{Z}) \subseteq af(1) + m\mathbb{Z}$ for all $a \in \mathbb{Z}$,

$$f(x+m\mathbb{Z}) \subseteq xf(1) + m\mathbb{Z}$$
$$= ktf(1) + (ks)\mathbb{Z}$$
$$\subseteq ktf(1) + k\mathbb{Z}$$
$$\subseteq k\mathbb{Z}.$$

Corollary 3.4. For $n, m, k \in \mathbb{Z}^+$ and (k, n) | (m, n). If $f \in \text{Hom}(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$, then $f(\overline{x} + m\mathbb{Z}_n) \subseteq k\mathbb{Z}_n$ for all $\overline{x} \in k\mathbb{Z}_n$.

Theorem 3.5. For $m, k \in \mathbb{Z}^+$ and k|m. Then

$$k\mathbb{Z} = (1 \cdot k + m\mathbb{Z}) \cup \ldots \cup (ak + m\mathbb{Z}) = \bigcup_{i=1}^{a} (ik + m\mathbb{Z})$$

where ak = m.

Proof. Since k|m and $m, k \in \mathbb{Z}^+$, ak = m for some $a \in \mathbb{Z}^+$. For $x \in \mathbb{Z}$, by the Division Algorithm, x = aq + r for some $q, r \in \mathbb{Z}$ and $0 \le r < a$. Then

$$kx = k(aq + r)$$

= kaq + rk
= mq + rk \in rk + m\mathbb{Z}.

Therefore $k\mathbb{Z} \subseteq \bigcup_{i=1}^{a} (ik + m\mathbb{Z})$. For i = 1, ..., a, let $y \in ik + m\mathbb{Z}$. Then y = ik + mt for some $t \in \mathbb{Z}$. Thus

$$y = ik + akt = k(i + at) \in k\mathbb{Z},$$

so $ik + m\mathbb{Z} \subseteq k\mathbb{Z}$. Therefore $\bigcup_{i=1}^{a} (ik + m\mathbb{Z}) \subseteq k\mathbb{Z}$. Hence $k\mathbb{Z} = \bigcup_{i=1}^{a} (ik + m\mathbb{Z})$.

Corollary 3.6. For $n, m, k \in \mathbb{Z}^+$ and (k, n)|(m, n). Then

$$k\mathbb{Z}_n = (1 \cdot \overline{k} + m\mathbb{Z}) \cup \ldots \cup (a\overline{k} + m\mathbb{Z}_n) = \bigcup_{i=1}^{d} (i\overline{k} + m\mathbb{Z}_n)$$

where a(k,n) = n.

Theorem 3.7. For $m, k \in \mathbb{Z}^+$, $k \mid m$ and $f \in \text{Hom}(\mathbb{Z}, \circ_{m\mathbb{Z}})$. If g is an identity mapping, then $(f,g) \in \text{SfHom}((F_k,\mathbb{Z}), (G_k,\mathbb{Z}))_{(\mathbb{Z}, \circ_{m\mathbb{Z}})}$ if and only if f(1) and m are relatively prime and $xf(1) + m\mathbb{Z} \subseteq f(x + m\mathbb{Z})$ for x = 1, ..., m.

Proof. Let g be an identity map and $f \in \text{Hom}(\mathbb{Z}, \circ_{m\mathbb{Z}})$.

Assume that $(f,g) \in \text{SfHom}((F_k,\mathbb{Z}), (G_k,\mathbb{Z}))_{(\mathbb{Z},\circ_{m\mathbb{Z}})}$. So $f(\mathbb{Z}) = \mathbb{Z}$. Hence f is onto. By Theorem 2.2, f(1) and m are relatively prime and $xf(1) + m\mathbb{Z} \subseteq f(x + m\mathbb{Z})$ for $x = 1, \ldots, m$.

Conversely, assume that f(1) and *m* are relatively prime and $xf(1) + m\mathbb{Z} \subseteq f(x+m\mathbb{Z})$ for x = 1, ..., m, we will show that $f(F_k(x)) = G_k(g(x))$ for all $x \in \mathbb{Z}$. If $F_k(x) = \mathbb{Z}$. By Theorem 2.2, $f(\mathbb{Z}) = \mathbb{Z}$. If $F_k(x) = k\mathbb{Z}$. Then

$$f(k\mathbb{Z}) = f(\bigcup_{i=1}^{a} (ik + m\mathbb{Z}))$$
 (by Theorem 3.5)
$$= \bigcup_{i=1}^{a} f(ik + m\mathbb{Z})$$
$$= \bigcup_{i=1}^{a} (ikf(1) + m\mathbb{Z})$$
 by $f \in \operatorname{Hom}(\mathbb{Z}, \circ_{m\mathbb{Z}}) \text{ and } xf(1) + m\mathbb{Z} \subseteq f(x + m\mathbb{Z}).$

Since f(1) and m are relatively prime, $if(1) + m\mathbb{Z} \neq jf(1) + m\mathbb{Z}$ for $i \neq j$. By Theorem 3.3, that is $f(x+m\mathbb{Z}) \subseteq k\mathbb{Z}$ for all $x \in k\mathbb{Z}$. We have $f(k\mathbb{Z}) = \bigcup_{i=1}^{a} (ikf(1) + m\mathbb{Z}) = k\mathbb{Z}$. Therefore $(f,g) \in \text{SfHom}((F_k,\mathbb{Z}), (G_k,\mathbb{Z}))_{(\mathbb{Z}, \circ_m\mathbb{Z})}$.

214

Corollary 3.8. For an identity mapping g,

$$f \in \operatorname{Epi}(\mathbb{Z}, \circ_{m\mathbb{Z}})$$
 if and only if $(f, g) \in \operatorname{SfHom}((F_k, \mathbb{Z}), (G_k, \mathbb{Z}))_{(\mathbb{Z}, \circ_{m\mathbb{Z}})}$

Theorem 3.9. For $m, k, n \in \mathbb{Z}^+$, (k, n)|(m, n) and $f \in \text{Hom}(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$. If g is an identity mapping, then $(f,g) \in \text{SfHom}((F_k, \mathbb{Z}_n), (G_k, \mathbb{Z}_n))_{(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})}$ if and only if $f(\overline{1})$ and (m, n) are relatively prime and $xf(\overline{1}) + m\mathbb{Z}_n \subseteq f(\overline{x} + m\mathbb{Z}_n)$ for $x = 1, \ldots, \frac{n}{(m, n)}$.

Proof. Let *g* be an identity map and $f \in \text{Hom}(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$.

Assume that $(f,g) \in \text{SfHom}((F_k, \mathbb{Z}_n), (G_k, \mathbb{Z}_n))_{(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})}$. So $f(\mathbb{Z}_n) = \mathbb{Z}_n$. Hence f is an onto. By Theorem 2.4, $f(\overline{1})$ and (m,n) are relatively prime and $xf(\overline{1}) + m\mathbb{Z}_n \subseteq f(\overline{x} + m\mathbb{Z}_n)$ for $x = 1, \ldots, \frac{n}{(m,n)}$.

Conversely, assume that $f(\overline{1})$ and (m,n) are relatively prime and $xf(\overline{1}) + m\mathbb{Z}_n \subseteq f(\overline{x} + m\mathbb{Z}_n)$ for $x = 1, \dots, \frac{n}{(m,n)}$, we will show that $f(F_k(x)) = G_k(g(x))$ for all $x \in \mathbb{Z}$. If $F_k(x) = \mathbb{Z}_n$. By Theorem 2.4, $f(\mathbb{Z}_n) = \mathbb{Z}_n$. If $F_k(x) = k\mathbb{Z}_n$. Then

$$f(k\mathbb{Z}_n) = f(\bigcup_{i=1}^{a} (i\overline{k} + m\mathbb{Z}_n))$$
 (by Corollary 3.6)
$$= \bigcup_{i=1}^{a} f(i\overline{k} + m\mathbb{Z}_n)$$
$$= \bigcup_{i=1}^{a} (i\overline{k}f(\overline{1}) + m\mathbb{Z}_n)$$
 by $f \in \operatorname{Hom}(\mathbb{Z}, \circ_{m\mathbb{Z}_n}) \text{ and } xf(\overline{1}) + m\mathbb{Z}_n \subseteq f(\overline{x} + m\mathbb{Z}_n).$

Since $f(\overline{1})$ and (m,n) are relatively prime, $if(\overline{1}) + m\mathbb{Z}_n \neq jf(\overline{1}) + m\mathbb{Z}_n$ for $i \neq j$. By Corollary 3.4, that is $f(\overline{x} + m\mathbb{Z}_n) \subseteq k\mathbb{Z}_n$ for all $\overline{x} \in k\mathbb{Z}_n$. We have $f(k\mathbb{Z}_n) = \bigcup_{i=1}^{a} (ikf(\overline{1}) + m\mathbb{Z}_n) = k\mathbb{Z}_n$. Therefore $(f,g) \in SfHom((F_k, \mathbb{Z}_n), (G_k, \mathbb{Z}_n))_{(\mathbb{Z}_n, \circ_m\mathbb{Z}_n)}$.

Corollary 3.10. For an identity mapping g,

$$f \in \operatorname{Epi}(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})$$
 if and only if $(f, g) \in \operatorname{SfHom}((F_k, \mathbb{Z}_n), (G_k, \mathbb{Z}_n))_{(\mathbb{Z}_n, \circ_{m\mathbb{Z}_n})}$

Example 3.11. Consider m = 12, $f \in \text{Hom}(\mathbb{Z}, \circ_{12\mathbb{Z}})$ so (f,g) is a soft inclusion homomorphism from (F_4, \mathbb{Z}) into (G_4, \mathbb{Z}) where f(1) = 5, $5x + 12\mathbb{Z} \subseteq f(x + 12\mathbb{Z})$ and g is an identity map.

If $5x + 12\mathbb{Z} \nsubseteq f(x + 12\mathbb{Z})$ then $f(x + 12\mathbb{Z}) \neq 5x + 12\mathbb{Z}$. So

$$f(4\mathbb{Z}) = f(\bigcup_{i=1}^{3} (4i+12\mathbb{Z}))$$
$$= \bigcup_{i=1}^{3} f(4i+12\mathbb{Z})$$
$$\neq \bigcup_{i=1}^{3} (4if(1)+12\mathbb{Z})$$
$$= (8+12\mathbb{Z}) \cup (4+12\mathbb{Z}) \cup (12\mathbb{Z}) = 4\mathbb{Z}.$$

Hence
$$f(4\mathbb{Z}) \neq 4\mathbb{Z}$$
 and $(f,g) \notin \text{SfHom}((F_4,\mathbb{Z}), (G_4,\mathbb{Z}))_{(\mathbb{Z},\circ_{12\mathbb{Z}})}$.
If $f(1) = 3$ then $f(\mathbb{Z}) \neq \mathbb{Z}$ since $\mathbb{Z} = \bigcup_{i=1}^{11} (i+12\mathbb{Z})$
 $f(\mathbb{Z}) = f(\bigcup_{i=1}^{11} (i+12\mathbb{Z}))$
 $= \bigcup_{i=1}^{11} f(i+12\mathbb{Z})$
 $= \bigcup_{i=1}^{11} (if(1)+12\mathbb{Z})$
 $= (3+12\mathbb{Z}) \cup (6+12\mathbb{Z}) \cup (9+12\mathbb{Z}) \cup (12\mathbb{Z}) \neq \mathbb{Z}.$

Hence $(f,g) \notin$ SfHom $((F_4,\mathbb{Z}), (G_4,\mathbb{Z}))_{(\mathbb{Z},\circ_{12\mathbb{Z}})}$.

In conclusion, we will see that soft homomorphisms on $(\mathbb{Z}, \circ_{m\mathbb{Z}})$ preserves *k*-soft hypergroups that is the following corollary.

Corollary 3.12. For $m \in \mathbb{Z}^+$ and g is an identity mapping. If $(f,g) \in \text{SfHom}((F_k,\mathbb{Z}), (G_l,\mathbb{Z}))_{(\mathbb{Z},\circ_{m\mathbb{Z}})}$, then k = l.

Acknowledgement(s) : I would like to thank the referee(s) for comments and suggestions on the manuscript. This work was supported by the National Research Council of Thailand and Mathematical Association of Thailand.

References

- D. Molodtsov, Soft set theory first results, Computers and Mathematics with Applications, 37 (1999), 19-31.
- [2] P. Corsini, Prolegomena of Hypergroup Theory. Udine: Aviani Editore, 1993.
- [3] S. Yamak, O. Kacanzi and B. Davvaz, *Soft hyperstructure*, Computers and Mathematics with Applications, 62 (2011), 797-803.
- [4] Witthawas Phanthawimol, *Homomorphisms of Some Hypergroups*, Doctoral Dissertation, Chulalongkorn University (2010).

216