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Abstract: The design of a new adaptive version of the multiple dependent
state (AMDS) sampling plan is presented based on the time truncated life
test under the Weibull distribution. We achieved the proposed sampling plan
by applying the concept of the double sampling plan and existing multiple
dependent state sampling plans. A warning sign for acceptance number was
proposed to increase the probability of current lot acceptance. The optimal
plan parameters were determined simultaneously with nonlinear optimization
problems under the producer’s risk and consumer’s risk. A simulation study
was presented to support the proposed sampling plan. A comparison between
the proposed and existing sampling plans, namely multiple dependent state
(MDS) sampling plans and a modified multiple dependent state (MMDS)
sampling plan, was considered under the average sampling number and
operating characteristic curve values. In addition, the use of two real datasets
demonstrated the practicality and usefulness of the proposed sampling plan.
The results indicated that the proposed plan is more flexible and efficient
in terms of the average sample number compared to the existing MDS and
MMDS sampling plans.

Keywords: Adaptive version of multiple dependent state sampling plan; time
truncated life test; quality level; weibull distribution; mean lifetime

1 Introduction

An essential tool in product control techniques is the Acceptance Sampling Plan (ASP). This
technique helps consumers decide to accept or reject a product by sampling items from the lot. At the
same time, the manufacturer can select a minimum sample size from the ASP to provide the acceptance
or rejection criteria for that lot. In the past, a single sampling plan (SSP) was the most commonly
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used for various industries, wherein the decision to accept or reject the lot sentencing depended on
a single sampling. Although SSP is easy to use, it often results in a more average sampling number
(ASN) than other sampling plans. In practice, if the producer and consumer want to make a clear
and precise decision concerning acceptance or rejection of a lot, some situations cannot be decided
with a single sample. They should use other sampling plans, such as the double sampling plan [1].
Additionally, manufacturers can use more effective sampling plans, such as MDS sampling plans, to
reduce sample size and inspection costs as well as make decisions based on current and previous sample
data. Baker et al. [2] presented an MDS sampling plan for a continuous manufacturing process and
sent the lot to a serial inspection. The MDS reduces the sample size because accepting or rejecting the
current lot depends on current and previous lots. Many researchers have presented the MDS sampling
plans in various situations. Govindaraju et al. [3] proposed the development of MDS sampling plans to
minimize the sum of producer’s and consumer’s risks under the specified acceptable quality level and
limiting quality level. Balamurali et al. [4] studied the MDS based on a variable sampling plan under
Normal distribution. Balamurali et al. [5] used the Bayesian methodology to investigate the MDS.
Some studies [6–10] used the concept of MDS sampling plan in control chart design. Some researchers
studied MDS sampling plans for coronavirus disease (COVID-19). Srinivasa et al. [11] applied the
MDS sampling plan to COVID-19 outbreak data in China when the lifetime is Exponentiated Weibull
Distribution. Aslam et al. [12] developed the MDS sampling plan based on a time truncated sampling
plan for the COVID-19 data using gamma distribution under indeterminacy.

Nowadays, many products are highly reliable, such as electronic products. However, it may not be
possible to test every item to ensure the mean lifetime of the product. Therefore, using an ASP can be
very helpful in deciding lots before exporting to consumers. The item samples are selected and tested
for the specified time in the life test. It can then be decided to accept or reject the lot using the number
of failures and sample size entries allowed for the test. Many researchers have proposed various lifetime
distributions for ASP designs to ensure product lifetime. For instance, Jun et al. [13] studied SSP and
DSP plans by considering variable data under the Weibull distribution. They used sudden mortality
testing to reduce inspection time and ASN. Rao [14] studied the group ASP to reduce the inspection
time under the Weibull distribution and generalized exponential distribution. Lio et al. [15] suggested
that the SSP provides a larger sample size to decide whether to accept or reject a lot. They found that
larger sample sizes meant more time and expense spent testing life. Rao et al. [16] presented an MDS
sampling plan wherein the life of products is truncated under exponentiated half logistic distribution.
Balamurali et al. [17] studied the median life of products for the MDS sampling plan under generalized
inverted exponential distribution. Nadi et al. [18] suggested a group MDS sampling plan following
the Weibull distribution. They found that the actual mean lifetime was longer than the specified
mean lifetime of products. Aslam et al. [19] studied the mean lifetime of products for a generalized
MDS sampling plan under gamma distribution, Burr type XII distribution, and Birnbaum-Saunders
distribution. MDS sampling plans generally reject the current lot immediately if the previous lot is of
medium quality. However, the rest of the lot is of good quality. Aslam et al. [20] created an adapted
version of the MDS Sampling Plan (MMDS), which they claimed was more flexible and efficient than
the existing MDS plan as measured by sample size and inspection cost under a time truncated life.
Al-Omari et al. [21] constructed the new ASP for Length-Biased Weighted Lomax distribution based
on a truncated life test. Tripathi et al. [22] presented an attribute modified chain sampling inspection
plan based on the time truncated life test under the Darna distribution. Abushal et al. [23] presented
the acceptance sampling plan under the power inverted Topp–Leone distribution. The median life of
products is used in the truncated life test.
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From exploring the literature, we found that the existing MDS sampling plan and MMDS
sampling plan are used to decide whether to accept or reject a current lot under a single sample. In some
cases, decisions using a single sample can be a problem between producers and consumers regarding
sample numbers or the acceptable number of defective products. Therefore, it is necessary to introduce
an adaptive MDS sampling plan to eliminate the weakness of the MDS sampling plan and MMDS
sampling plan. For this reason, we designed an adaptive version of the MDS (AMDS) sampling plan,
intending to achieve a reduced sample size and increase the probability of current lot acceptance under
the quality level. The concept of the DSP is applied together with the existing MDS and MMDS
sampling plans. Suppose the quality of the product selected from the first sample is undecided. In that
case, the second sample must be taken for inspection, after which the decision can be made to accept
or reject the current lot based on the previous lots. The AMDS sampling plan is expected to be more
flexible and efficient than the existing MDS and MMDS sampling plans. In this study, we endeavor
to increase the probability of current lot acceptance and thus divide the acceptance quality into three
levels: Excellent, good, or moderate. We focus on designing the AMDS sampling plan when the mean
lifetime is based on the Weibull distribution under the time truncated life test. The comparison of the
proposed sampling plan with existing sampling plans is given in terms of the ASN.

The rest of this paper is organized as follows: Section 2 shows a brief description of the Weibull
distribution. Section 3 proposes the operating procedure and the design of the AMD sampling plan
under a time truncated life test. The numerical results, comparison between the AMD sampling plan
and the existing MDS sampling plan, and application of two real datasets are presented in Section 4.
Finally, the concluding remarks and future work are discussed in Section 5.

2 Weibull Distribution

The Weibull distribution is the most widely used tool to model the lifetime of data because of its
closed-form and flexibility. Many engineering works have studied the lifetime of products based on the
Weibull distribution, such as ball bearings, automobile components, and electronic devices. Nowadays,
the Weibull distribution is well-known for being used to design the ASP: Please see the example
[24–28]. This research designs the AMDS sampling plan to approve the mean lifetime of the product
under the Weibull distribution. Let t be the lifetime of a product under the Weibull distribution, and
the cumulative distribution function is defined by

F (t; λ, δ) = 1 − e−( t
λ )

δ

, t ≥ 0, λ > 0, δ > 0, (1)

where the shape parameter is δ, its value is known, while the scale parameter is λ, which is unknown.
The mean lifetime of the product based on the Weibull distribution is given as follows:

μ =
(

λ

δ

)
�

(
1
δ

)
(2)

The failure probability of a product before time trial t0 under the Weibull distribution is shown as
the following equation:

p = 1 − e−
( t0

λ

)δ

(3)

The value of t0 can be written in terms of the specified mean lifetime μ0, e.g., t0 = aμ0 for an
experiment termination ratio (a). Reference [20] shows that from Eq. (3), the failure probability of
product before the time trial can be rewritten as:
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p = 1 − e−aδ(
μ0
μ )

δ
( 1

δ
�( 1

δ ))
δ

. (4)

Eq. (4) show the failure probability in term of the experiment termination ratio, shape parameter,
and mean lifetime based on the Weibull distribution.

3 Design of the Adaptive Version of a Multiple Dependent State Sampling Plan Based on a Time
Truncated Life Test

Worth and Baker [2] constructed an MDS sampling plan as an attribute inspection process. This
sampling plan decides to accept or reject the current lot and requires a continuous sample from the
current and previous lots. This reason will result in a reduced sample size. Additionally, this sampling
plan is usually used when production is ongoing with multiple lots, and each lot is submitted in
sequence for inspection. However, the MDS sampling plan considers data from previous lots using a
minimum sample size to eliminate a current lot of moderate quality. The MDS sampling plan will reject
the current lot if the previous lot is of moderate quality, but all the remaining lots are of good quality.
This reason will increase the risk for manufacturers. Regarding sample size and economic perspective,
Nadi et al. [18] introduced the MMDS sampling plan to provide more flexibility and efficiency than
the existing MDS sampling plan. As a result, both sampling plans provide more opportunities for
producers when the current lot is of moderate quality. The difference is that the existing MDS sampling
plan will only accept the current lot if the previous lot (m) is of good quality. Meanwhile, the MMDS
sampling plan will accept the current lot if no more than one of the previous lots is of moderate quality;
the remaining lots (m − 1) must satisfy the same conditions as MDS sampling plan. For the reasons
mentioned earlier, the existing MDS sampling plan and MMDS sampling plan will accept or reject the
current lot under a single sampling. In some cases, a single sampling may not be sufficient to accept
or reject the current lot. Therefore, there is an opportunity to increase the producer’s risk and reduce
the consumer’s risk.

This research aims to apply the concept of DSP together with the MDS and MMDS sampling
plans. Suppose the product quality selected from the first sample is undecided. It is necessary to take
the second sample for inspection and then decide to accept or reject the model. This sampling plan
reduces the sample size over the MDS and MMDS sampling plans, recognizing that it will accept the
current lot if they are of excellent, good, or moderate quality. This sampling plan will reduce the risk to
the manufacturer. However, it will not affect consumers. Therefore, the proposed sampling plans are
more flexible than the existing MDS and MMDS sampling plans concerning the reduced sample size.

Conditions and operating procedure

The AMDS sampling plan has the same conditions and operating procedures as the existing MDS
and MMDS sampling plans:

(1) The product inspected consists of serial lots produced by continuous processes.
(2) In general, each lot examined should be of the same quality.
(3) The exact number of samples is chosen from each lot.
(4) The current lot will be the same quality as the previous lot, or it was immediately successful.
(5) Consumers have confidence in the honesty of the manufacturer.

The AMDS sampling plan is based on time truncated life tests under the Weibull distribution. Let
the life test terminate at time trial t0. There are six parameters, namely portraying the AMDS sampling
plan, n1, n2, ca1, cw, ca2, and m. The operating procedure for the AMDS sampling plan includes the
following steps:
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Step 1. Choose the first random sample size n1 from the current lot. Put sample items on a
truncated life test and count the number of nonconforming items before the time trial t0, denoted
as d1.

Step 2. The current lot is accepted if d1 ≤ ca1, called Type I acceptance, and the current lot is
rejected if d1 > ca2. Otherwise, go to Step 3.

Step 3. The current lot is accepted if ca1 < d1 ≤ cw, in which previous lots were accepted with
d1 ≤ ca1, called Type II acceptance. Otherwise, go to Step 4.

Step 4. If cw < d1 ≤ ca2, choose the second sample size n2, Put sample items on a truncated life
test and count the number of nonconforming items before the time trial t0; denote it as d2. Accept the
current lot if d1 + d2 ≤ ca2 and no more than one previous lot with good quality and the remaining
m−1 previous lots are of excellent quality, called Type III acceptance. Otherwise, reject the current lot.

We can summarize the above steps in a flow chart, as presented in Fig. 1.

Figure 1: Operating procedure for the AMDS sampling plan

where n1 is the sample size for the first inspection,

n2 is the sample size for the second inspection,

ca1 is the maximum acceptable number of nonconforming items for unconditional acceptance
ca1 ≥ 0,

cw is the acceptable warning number of additional nonconforming items for conditional accep-
tance ca1 < cw < ca2,

ca2 is the maximum acceptable number of additional nonconforming items for conditional
acceptance ca2 > cw, and

m is the number of previous lots.
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This research aims to develop an existing MDS sampling plan to accept the current lot better
based on the time truncated life test. Therefore, an acceptable warning number (cw) is proposed to
increase the probability of current lot acceptance.

Type I acceptance (PI (p)) is the probability of current lot acceptance when its quality is excellent
without considering the quality of m previous lots, given as follows:

PI (p) = P (d1 ≤ ca1) (5)

Type II acceptance (PII (p)) is the probability of current lot acceptance when its quality is good
provided previous lots are of excellent quality (d1 ≤ ca1) and obtained as follows:

PII (p) = P (ca1 < d1 ≤ cw) P(d1 ≤ ca1)
m (6)

Type III acceptance (PIII (p)) is the probability of current lot acceptance when the quality is
moderate, then the second sampling occurs. Provided that no more than one of the previous lot is
of good quality whereas the remaining m − 1 previous lots are under excellent quality and obtained as
follows:

PIII (p) = P (cw < d1 ≤ ca2) P (d1 + d2 ≤ ca2)

× [
P(d1 ≤ ca1)

m + mP (ca1 < d1 ≤ cw) P(d1 ≤ ca1)
m−1] . (7)

Thus, the performance of the AMDS sampling plan is interpreted by the operating characteristic
(OC) function, which is defined by

Pa (p) = PI (p) + PII (p) + PIII (p)

= P (d1 ≤ ca1) + P (ca1 < d1 ≤ cw) P(d1 ≤ ca1)
m

+ P (cw < d1 ≤ ca2) P (d1 + d2 ≤ ca2)

× [
P(d1 ≤ ca1)

m + mP (ca1 < d1 ≤ cw) P(d1 ≤ ca1)
m−1] . (8)

In this study, from Eq. (8), the OC function can be determined by the binomial distribution, which
is shown as follows.

Pa (p) =
ca1∑

d1=0

(
n1
d1

)
pd1(1 − p)n1−d1 +

⎛
⎝ cw∑
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(
n1
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)
pd1(1 − p)n1−d1

⎞
⎠ ·

⎛
⎝ ca1∑
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(
n1
d1

)
pd1(1 − p)n1−d1

⎞
⎠

m

+
⎛
⎝ ca2∑

d1=cw+1

(
n1
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)
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(
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⎠

m−1
⎤
⎥⎦ .

(9)

Another essential point to note is that we can switch the AMDS sampling plan to SSP and DSP
by considering the following:

(1) Considering that m → ∞, the AMDS sampling plan is reduced to SSP with an acceptance
number ca1.
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(2) Considering that m → 0 and ca1 = cw or ca2 = cw, then the AMDS sampling plan is reduced
to DSP with acceptance numbers ca1 and ca2. The ASN function of the AMDS sampling
plan(ASNAMDS) is derived by

ASNAMDS = n1PI + (n1 + n2) (1 − PI) ; PI = P (d1 ≤ cw) + P (d1 > ca2)

= n1 + n2 (1 − PI)

= n1 + n2

⎡
⎣1 −

ca2∑
d1=cw+1

(
n1

d1

)
pd1(1 − p)

n1−d1

⎤
⎦ (10)

4 Results, Comparative Study, and Application of Real Datasets

In order to provide good quality electronic products, time and costs are necessary for the
inspection process. The ASP that can reduce time and costs for the inspection processes is the economic
sampling plan, which minimizes ASN to reduce time and costs. The AMDS sampling plan aims to
obtain an ASN lower than the existing MDS and MMDS sampling plans. This sampling plan ensures
that the mean lifetime and the ratio between the true mean lifetime and the specified mean lifetime(
μ

/
μ0

)
are essential to the product. We consider that the failure probability of a product is related to

the mean ratio, which affects the quality level of the product. The requirements for the producer’s risks
(α) and consumer’s risks (β) are considered with the acceptable quality level (AQL or p1) and limiting
quality level (LQL or p2). The AMDS sampling plan is practical with two points (AQL , 1 − α) and
(LQL, β), and will be considered for changes in the OC curve. A producer expects that the probability
of current lot acceptance should be greater than 1−α at p1. On the other hand, a customer also expects
that the probability of current lot acceptance should be less than β at p2. The nonlinear optimization
technique is used to determine the optimal parameters, which results in the reduced size of the ASN
at p1. The optimization problem is as follows.

Objective function:

Minimize ASNAMDS (11)

Subject to: Pa (p1) ≥ 1 − α, Pa (p2) ≤ β,

n1, n2 > 1, m ≥ 1, ca2 > cw > ca1 ≥ 0.

Let the mean ratio of the producer’s risk be μ
/

μ0 = 2, 4, 6, 8, 10. In contrast, consumers expect
to get good products, and we assume the mean ratio μ

/
μ0 = 1 as the consumer’s risk. Under the

Weibull distribution, the values of p1 and p2 are calculated using Eq. (4) for different values μ
/

μ0. The
optimal parameters (n1, n2, ca1, cw, ca2, m) of the AMDS sampling plan under the Weibull distribution
are determined and selected to simultaneously satisfy the producer’s and consumer’s risks with the
minimum sample size. In this section, the producer’s risk is set at α = 0.05 with different consumer’s
risk values at β = 0.25, 0.10, 0.05, and 0.01. Also, two cases of the experiment termination ratio are
considered as a = 0.5 and 1.0. The values for shape parameters under the Weibull distribution are
δ = 2, 2.5, and 3.0.
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4.1 Numerical Results

Tabs. 1–3 present the optimal parameters for the AMDS sampling plan under the Weibull
distribution. The results show that, for the fixed values of a and μ

/
μ0, if β decreases or δ increases,

the ASNAMDS increases. Additionally, the ASNAMDS tends to decrease if μ
/

μ0 increases. For the fixed
values of β and δ, the ASN decreases if a or μ

/
μ0 increases. We consider that, for fixed β, a, and δ,

the ASNAMDS tends to be closer or equal to n1 if μ
/

μ0 increases. It means that the higher the μ
/

μ0,
the lower the ASNAMDS used in the inspection lot.

Table 1: Optimal plan parameters for the AMDS sampling plan with δ = 2

β μ
/

μ0 a = 0.5 a = 1.0
n1 n2 ca1 cw ca2 m ASNAMDS Pa (p1) n1 n2 ca1 cw ca2 m ASNAMDS Pa (p1)

0.25 2 18 18 1 3 5 1 18.1664 0.9543 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 16 16 1 3 5 2 16.0200 0.9995 9 6 1 2 3 1 9.0413 0.9938
6 14 14 0 2 4 3 14.0008 0.9850 8 8 1 2 3 1 8.0956 0.9998
8 11 11 0 3 5 4 11.0004 0.9958 7 5 0 2 3 1 7.0003 0.9932
10 10 10 0 3 5 2 10.0001 0.9993 5 5 0 1 2 1 5.0003 0.9985

0.10 2 24 24 2 4 7 1 24.1195 0.9887 6 6 2 3 6 1 6.0669 0.9942
4 22 22 1 4 6 2 22.0001 0.9983 10 3 1 2 3 3 10.0281 0.9821
6 19 19 0 2 4 3 19.0028 0.9737 9 1 0 1 2 1 9.0144 0.9696
8 16 15 0 3 5 2 16.0018 0.9955 8 8 0 1 4 2 8.0317 0.9840
10 13 13 0 3 5 2 13.0002 0.9987 7 3 0 3 4 3 7.0000 0.9919

0.05 2 28 28 2 4 6 1 28.2677 0.9733 8 8 2 4 6 2 8.0496 0.9531
4 27 27 1 3 5 1 27.0084 0.9982 11 4 1 3 4 3 11.0049 0.9756
6 27 24 1 4 6 2 27.0014 0.9998 10 7 1 3 4 2 10.0003 0.9993
8 26 25 1 4 6 3 26.0004 1.0000 9 9 0 1 4 2 9.0455 0.9802
10 22 22 0 4 6 1 22.0001 0.9982 9 5 0 1 3 4 9.0106 0.9836

0.01 2 32 32 2 5 7 1 32.1160 0.9602 11 9 3 5 8 3 11.0586 0.9640
4 32 32 1 3 6 2 32.0194 0.9935 12 10 1 2 3 2 12.1555 0.9724
6 30 29 0 2 5 1 30.0170 0.9973 12 2 1 2 3 3 12.0036 0.9979
8 30 26 0 2 5 1 30.0029 0.9923 12 3 0 3 4 3 12.0011 0.9511
10 29 29 0 2 5 1 29.0008 0.9969 10 4 0 3 4 4 10.0008 0.9796

Note: ∗ There is no optimal no optimal plan

Table 2: Optimal plan parameters of the AMDS sampling plan with δ = 2.5

β μ
/

μ0 a = 0.5 a = 1.0

n1 n2 ca1 cw ca2 m ASNAMDS Pa (p1) n1 n2 ca1 cw ca2 m ASNAMDS Pa (p1)

0.25 2 24 24 1 3 5 2 24.0483 0.9793 10 10 2 4 7 1 10.0412 0.9867
4 22 22 0 2 4 4 22.0022 0.9739 11 9 0 1 4 1 11.2264 0.9543
6 16 15 0 4 6 1 16 0.9994 9 1 0 3 4 4 9 0.9810
8 13 12 0 4 6 3 13 0.9997 8 2 0 3 4 4 8 0.9960
10 12 10 0 4 6 3 12 0.9999 8 8 0 2 4 3 8 0.9990

0.10 2 34 32 1 3 5 1 34.2326 0.9653 11 11 2 4 7 1 11.0748 0.9789
4 32 31 1 4 6 3 32.0010 0.9998 13 4 1 3 4 3 13.0006 0.9965
6 28 23 0 3 5 1 28.0004 0.9983 11 11 0 1 5 3 11.0403 0.9794

(Continued)
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Table 2: Continued
β μ

/
μ0 a = 0.5 a = 1.0

n1 n2 ca1 cw ca2 m ASNAMDS Pa (p1) n1 n2 ca1 cw ca2 m ASNAMDS Pa (p1)

8 26 23 0 3 5 2 26 0.9993 10 2 0 3 4 4 10.0004 0.9939
10 25 21 0 3 5 2 25 0.9998 9 4 0 1 3 3 9.0008 0.9987

0.05 2 40 39 2 4 7 2 40.0829 0.9923 13 13 3 5 8 1 13.0354 0.9952
4 37 36 0 2 5 1 37.0172 0.9803 13 9 1 2 3 2 13.0245 0.9971
6 36 36 2 5 1 2 36.0008 0.9973 13 1 0 3 4 3 13.0110 0.9710
8 34 33 0 2 5 1 34.0001 0.9994 12 12 0 1 4 4 12.0129 0.9916
10 30 29 0 2 5 1 30 0.9998 11 6 0 3 4 2 11 0.9987

0.01 2 60 55 2 4 6 1 60.6434 0.9704 12 10 2 4 7 1 12.1048 0.9693
4 52 51 1 3 5 2 52.0033 0.9866 13 13 1 2 4 2 13.0375 0.9977
6 43 41 0 3 5 1 43.0004 0.9962 13 13 0 2 4 4 13.0020 0.9634
8 40 39 0 2 4 1 40.0001 0.9992 13 3 0 3 4 4 13.0025 0.9901
10 38 35 0 2 4 2 38 0.9995 12 11 0 1 3 4 12.0039 0.9971

Table 3: Optimal plan parameters for the AMDS sampling plan with δ = 3

β μ
/

μ0 a = 0.5 a = 1.0

n1 n2 ca1 cw ca2 m ASNAMDS Pa (p1) n1 n2 ca1 cw ca2 m ASNAMDS Pa (p1)

0.25 2 34 26 1 5 7 2 34 0.9942 12 8 2 5 8 3 12.0018 0.9840
4 22 13 0 4 7 4 22 0.9965 12 2 0 1 3 3 12.0150 0.9608
6 20 13 0 4 6 2 20 0.9999 11 9 0 2 4 4 11.0001 0.9952
8 20 20 0 3 5 4 20 1.0000 9 7 0 2 3 4 9 0.9994
10 17 16 0 4 6 3 17 1.0000 9 4 0 2 3 4 9 0.9998

0.10 2 51 46 1 3 5 1 51.1129 0.9877 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 37 34 0 3 5 1 37 0.9975 13 13 0 1 4 2 13.1145 0.9681
6 33 24 0 4 6 2 33 0.9996 13 1 0 3 4 4 13 0.9934
8 33 32 0 3 5 3 33 0.9999 12 9 0 1 3 4 12.0011 0.9989
10 31 29 0 3 5 2 31 1.0000 11 8 0 1 3 4 11.0002 0.9998

0.05 2 59 56 1 3 5 1 59.2326 0.9801 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 47 43 0 3 5 1 47 0.9960 13 13 0 1 5 2 13.1145 0.9681
6 47 44 0 3 5 1 47 0.9996 13 3 0 3 4 4 13 0.9934
8 44 41 0 3 5 2 44 0.9999 13 13 0 2 3 4 13 0.9987
10 42 42 0 3 5 2 42 1.0000 12 11 0 1 3 4 12.0004 0.9997

0.01 2 65 64 1 3 5 1 65.3744 0.9727 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 63 61 0 3 5 4 63.0001 0.9752 13 13 0 1 4 3 13.1145 0.9551
6 62 61 0 3 5 1 62 0.9994 13 5 0 1 3 4 13.0041 0.9935
8 59 59 0 2 4 2 59 0.9998 13 12 0 3 5 4 13 0.9987
10 56 50 0 2 4 2 56 1.0000 13 11 0 2 3 3 13 0.9997

Note: ∗ There is no optimal no optimal plan
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The OC curves present the effect of m values based on the probability of current lot acceptance
with different m values, but n1, n2, ca1, cw, and ca2 are equal. The optimal plan parameters are considered
for fixed a = 0.5, δ = 2, μ

/
μ0 = 8, α = 0.05 and β = 0.10. As a result, the optimal plan parameters

are (n1, n2, ca1, cw, ca2, m) = (37, 37, 1, 3, 6, 2), and the OC curve for the AMDS sampling plan with
m = 1, 2, 3, and 4 are shown in Fig. 2. It can be seen from Fig. 2 that m = 2, 3, and 4 give the probability
of current lot acceptance lower than m = 1. As a result, there is a high probability of current lot
acceptance. It depends only on the acceptance of the previous lot. In addition, if the proportion of
nonconformity is increased, the value of m does not significantly affect the probability of current lot
acceptance.

Figure 2: OC curves for the AMDS sampling plan with different m values

Illustrative example: To consider applying the AMDS sampling plan from Tabs. 1–3, we suppose
that a manufacturer wants to test the mean lifetime of items where the lifetime is based on the Weibull
distribution with shape parameter 2. Let the specified lifetime of the product (μ0) be 500 hrs, and the
time trial (t0) be 250 hrs; then, the experiment termination ratio of this test (a) is 0.5. In addition, it
is assumed that α = 0.05,β = 0.25, and μ

/
μ0 = 2. Tab. 1 gives the optimal plan parameters for the

AMDS sampling plan as (n1, n2, ca1, cw, ca2, m) = (18, 18, 1, 3, 5, 1), wherein the probability of current
lot acceptance is 0.9543, and ASNAMDS is 18.1664. The inspection procedure is as follows:

Step 1: Choose a first random sample of 18 items from the current lot and put it on the life test.
Count the number of nonconforming items (d1) before t0 = 250 hrs.

Step 2: If d1 ≤ 1, the current lot will be accepted regardless of the quality of the previous lot, which
is called excellent quality. If d1 > 5, the current lot will be rejected. Otherwise, go to step 3.

Step 3: If 1< d1 ≤ 3, the current lot is accepted provided that only one previous lot (m = 1) is of
excellent quality, which means the current lot is given good quality. Otherwise, go to step 4.

Step 4: If d1 +d2 ≤ 5, the current lot is accepted if no more than one of the previous lots is of good
quality, which means the current lot is given moderate quality. Otherwise, reject the current lot.

4.2 Comparative Study

ASN perspective: To demonstrate the efficacy of the AMDS sampling plan in reducing ASN
better than the existing MDS and MMDS sampling plans. The ASN of three sampling plans are
shown in Tab. 4, in which the concepts and results of ASN under the MMDS and the existing MDS
sampling plans are referenced in [20] and [27], respectively. This study compared the ASNs of the three
sampling plans using the same parameters. Also, the ASN of the AMDS sampling plan is calculated
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by substituting cw = ca1 = c1 in the OC function. Tab. 4 shows that the AMDS sampling plan
has a smaller ASN than the existing MDS and MMDS sampling plans. For example, suppose that
α = 0.05,β = 0.01, a= 0.5, δ= 2, and μ

/
μ0= 4, then the ASN of the AMDS sampling plan is 22.2689,

while the ASN of the MDS and MMDS sampling plans are 24 and 35, respectively. We found that
the ASN of the AMDS sampling plan decreases as the mean ratio increases, whereas the ASNs of
the existing MDS and MMDS sampling plans remain constant. Moreover, the ASN of the AMDS
plan is the lowest as the consumer’s risk decreases, while the OC function is the greatest. Following
the Weibull distribution, the AMDS sampling plan can ensure a better mean lifetime for the product
than the existing MDS and MMDS sampling plans based on the minimum sample size.

Table 4: ASN of the AMDS sampling plan, MMDS sampling plan, and MDS sampling plan for
ensuring mean lifetime under the Weibull distribution with δ = 2 and a = 0.5

β μ
/

μ0 AMDS MMDS [20] MDS [27]

ASN Pa (p1) ASN Pa (p1) ASN Pa (p1)

0.25 4 6.0688 0.9877 8 0.9930 8 0.9801
6 6.0318 0.9974 8 0.9989 8 0.9957
8 5.0303 0.9994 8 0.9997 8 0.9986
10 5.0195 0.9997 8 0.9999 8 0.9994

0.10 4 7.0793 0.9837 12 0.9818 12 0.9583
6 6.0318 0.9974 12 0.9971 12 0.9906
8 6.0181 0.9992 12 0.9992 12 0.9969
10 6.0117 0.9996 12 0.9997 12 0.9987

0.05 4 10.2184 0.9788 16 0.9747 16 0.9551
6 10.0518 0.9957 16 0.9956 16 0.9900
8 9.0269 0.9989 16 0.9987 16 0.9967
10 9.0174 0.9995 16 0.9995 16 0.9986

0.01 4 22.2689 0.9939 24 0.9794 35 0.9871
6 15.0756 0.9907 24 0.9892 24 0.9783
8 15.0440 0.9969 24 0.9969 24 0.9927
10 13.0249 0.9990 24 0.9989 24 0.9969

OC curve perspective: This section compares the probability of current lot acceptance between
the proposed sampling plans, MMDS and MDS, based on the OC curves of those plans given the
same parameters. Suppose n1 = 8, n2 = 8, ca1 = 0, cw = 1, ca2 = 4 and m = 2 for AMDS sampling
plan and n = 8, c1 = 0, c2 = 4 and m = 2 for MDS and MMDS sampling plans, respectively. All
three sampling plans are considered based on the time truncated life test for the Weibull distribution
when δ = 2, a = 1, μ

/
μ0 = 6, α = 0.05, and β = 0.25. From Fig. 3, it can be seen that the AMDS

sampling plan provides a higher probability of current lot acceptance compared to the existing MDS
and MMDS sampling plans for small values of the proportion of nonconformity. As the proportion
of nonconformity increased, we found that the OC curve of the proposed sampling plan aligned with
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the OC curves of the other two sampling plans. Based on this comparison, it can be concluded that
the proposed sampling plan had better usability than the existing MDS and MMDS sampling plans.

Figure 3: OC curves for AMDS, MMDS, and MDS sampling plan

4.3 Application of Real Datasets

Two real datasets were used to investigate the efficiency of the AMDS sampling plan under the
Weibull distribution. First, we needed to check the Weibull distribution fits for both datasets. The
unknown parameters were estimated using the maximum likelihood method, and the goodness of the
fitness value was judged using the Kolmogorov-Smirnov (K-S) test. The model-fitting results for two
real datasets are shown in Tab. 5.

Table 5: Model fitting results for two real datasets

Dataset Parameter estimate L-L AIC BIC K-S p-value

1 δ̂ = 2.0065
λ̂ = 9.8989

−142.5215 289.043 292.8266 0.0879 0.8430

2 δ̂ = 1.1569
λ̂ = 60.3748

−251.3237 506.6475 510.4715 0.1086 0.5967

The first dataset: Dataset of the stress-rupture life of Kevlar 49/epoxy strands under constant pres-
sure at 70% stress level until everything fails (in 1, 000 h) is considered, as shown in Cooray et al. [29].
A total of 49 observations are discussed below:

1.051 1.137 1.389 1.921 1.942 2.322 3.629 4.006 4.012 4.063 4.921

5.445 5.620 5.917 5.905 5.956 6.068 6.121 6.473 7.501 7.886 8.108

8.546 8.666 8.831 9.106 9.711 9.806 10.205 10.396 10.861 11.026 11.214

11.362 11.604 11.608 11.745 11.762 11.895 12.044 13.520 13.670 14.110 14.496

15.395 16.179 17.092 17.568 17.568

From Tab. 5, the K-S test is 0.087937 with a p-value of 0.843. Therefore, first dataset is fit for
the Weibull distribution. The maximum likelihood estimate of shape parameter δ̂ = 2.0064806≈2
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resulted in the value μ̂ = 8.77. Given that μ0 is 8.77 and t0 is 4.385, then a is 0.5. From Tab. 1,
consider α = 0.05, β = 0.25, and μ

/
μ0= 4, the optimal plan parameter for the AMDS sampling

plan is (n1, n2, ca1, cw, ca2, m) = (16, 16, 1, 3, 5, 2), the probability of current lot acceptance is 0.9995,
and ASNAMDS is 16.02. For illustration purposes, the first random sample is chosen 16 items, then put
on the life test for the sample items in the time trial from the current lot as follows:

15.395 3.629 14.496 17.568 6.068 4.921 8.546 11.214

5.917 5.905 5.956 4.063 6.121 1.137 7.501 7.886

From 16 items, three failures (d1= 3) are recorded before the time trial 4.385; the results show
1< d1 ≤3 (ca1 < d1 ≤ cw). Therefore, the second sample is chosen 16 items, put on the life test, and
counted for the nonconforming item during the time trial 4.385 as follows:

4.006 8.831 5.620 8.108 10.396 11.604 13.670 14.110

8.666 5.445 11.745 9.711 9.806 2.322 10.861 11.026

Under the second inspection, only one failure (d2= 1) is observed from the current lot; the results
show d1 + d2 < 5 (d1 + d2 ≤ ca2). The current lot is accepted if the two previous lots (m= 2) are of
excellent quality.

The second dataset: The following dataset represents the failure times for a sample of 50 electronic
devices, as shown in Kenett et al. [30]. A total of 50 observations are discussed below:

26.3 78.5 29.8 22.6 113.1 157.4 2.4 51.9 29.3 40.3 216.6 30.5 31.6

57.5 38.1 113.7 1.0 96.8 63.3 72.1 107.4 39.6 29.0 11.0 105.2 36.7

7.1 85.5 24.6 28.0 23.6 14.7 24.3 46.9 56.9 293.4 33.0 47.0 51.9

20.0 20.3 158.9 54.0 14.8 81.2 46.0 42.8 8.9 35.7 32.3

From Tab. 5, The K-S test is 0.0980 with a p-value of 0.5967. Therefore, second dataset is fit for
the Weibull distribution. The maximum likelihood estimate of shape parameter δ̂ = 1.1569 resulted in
the value μ̂ = 57.3601. Given that μ0 is 57.3601 and t0 is 28.7, then a is 0.5. From the optimization
technique, consider α = 0.05, β = 0.10 and μ

/
μ0 = 4, the optimal plan parameter of the AMDS

sampling plan is (n1, n2, ca1, cw, ca2, m) = (11, 8, 1, 3, 5, 1), the probability of current lot acceptance is
0.9511, and ASNAMDS is 11.07. For illustration purposes, we chose a first random sample of 11 items
and put the sample items on the life test for the time trial from the current lot as follows:

30.5 31.6 57.5 38.1 113.7 1.0 96.8 63.3 29.0 11.0 105.2

From 11 items, we note that two failures (d1 = 2) are recorded before the time trial 28.7; the results
show 1< d1 < 3 (ca1 < d1 ≤ cw). Therefore, the second sample is chosen 8 items, put on the life test,
and counted for nonconforming items during the time trial 28.7 as follows:

33.0 47.0 51.9 20.0 20.3 158.9 54.0 14.8

Under the second inspection, three failures (d2 = 3) are observed from the current lot; the results
show that d1 + d2 ≤ 5 (d1 + d2 ≤ ca2). Then, the current lot is accepted if only one previous lot (m = 1)
is of excellent quality.

5 Conclusions

This paper proposes a new adaptive version of the multiple dependent state (AMDS) sampling
plan for a truncated life test based on the Weibull distribution. The concept of DSP is used to apply
together with the existing MDS and MMDS sampling plans. The proposed sampling plan will accept
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the current lot if the quality of the product is of excellent, good, or moderate quality. The nonlinear
optimization technique is used to determine the optimal plan parameters to satisfy the consumer’s
and producer’s risks simultaneously. Tables for optimal plan parameters are presented under different
shape parameter values, manufacturer’s risk, consumer’s risk, and test termination ratio. A comparison
between the proposed plan and the existing plan is considered under the ASN and OC curve values. The
illustrative example shows the operational process for the proposed plan. In addition, the application
of two real datasets demonstrates the usability and usefulness of the proposed plan. Finally, we
conclude that the AMDS sampling plan under the Weibull distribution is more flexible and efficient
in terms of the average sample number than the existing MDS and MMDS sampling plans. The
AMDS sampling plan will be considered under accelerated testing techniques and cost determination
in future work.
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