
 
Current Applied Science and Technology Vol. 21 No. 2 (April-June 2021) 

 

227 

 

Designing of Optimal Required Sample Sizes for  

Double Acceptance Sampling Plans under the Zero-Inflated 

Defective Data 

 
Pramote Charongrattanasakul1 and Wimonmas Bamrungsetthapong2* 

 
1Division of Mathematics, Faculty of Science and Technology, Rajamangala  

University of Technology Krungthep, Bangkok, Thailand 
2Division of Applied Statistics, Faculty of Science and Technology, Rajamangala 

University of Technology Thanyaburi, Pathumthani, Thailand 
 

Received: 9 May 2020, Revsied: 3 August 2020, Accepted: 16 September 2020 

 

 

Abstract 

 
This research proposes an optimal double acceptance sampling plan (DSP) for manufacturing that 

is affected by zero-inflated data. Suppose that the number of defective items for sample inspection 

is considered to be under Zero-inflated Poisson (ZIP) distribution. A multi-objective optimization 

using Genetic Algorithm is applied to calculate the optimal parameters (𝑛1, 𝑛2, 𝑐1, 𝑐2)∗  of the 
proposed DSP, which is concerned with maximizing the probability of acceptance sampling 

plan (𝑃𝑎)  and minimizing the total cost of inspection (𝑇𝐶)  and the average number of 

samples(𝐴𝑆𝑁)simultaneously. The optimal solution was focused on the design of the required 

sample sizes (𝑛1, 𝑛2)  based on three different scenarios. The results showed that the first sample 

and the second sample should be equal (𝑛1 = 𝑛2). Moreover, it was found that the probability of 

extra zeros (∅) under the ZIP distribution affects the required sample sizes and the performance of 

the proposed DSP. Illustrations for selecting the optimal parameters of the proposed DSP are also 

provided. Real data with excess zero is used to illustrate the application of the proposed DSP. 
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1. Introduction 
 

One important tool in the product control technique is an acceptance sampling plan (ASP). An ASP 

is applied in many areas to inspect the quality of items such as raw materials, some partial products 

of the production process, and finished products. This technique helps consumers decide whether to 

accept or reject a product that is produced by manufacturers based on sampling results selected from 

a lot.  Users can decide to choose the minimum sample size from a sampling plan to achieve the 
acceptance criteria or the rejection criteria for that lot. Dodge and Romig's tables are widely used to 
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decide on a sampling plan in which users know the lot size, percent nonconformance of the lot, 

producer’s risk, and consumer’s risk for the production process [1].  In practice, if some necessary 

values are unknown, then they cannot choose the optimal ASP.  This problem can affect the total 

cost of the inspection.  Recently, many researchers have studied the determination of optimal ASP 

model using optimization techniques as follows. Duarte and Saraiva [2] proposed a method to find 
the optimal value of the ASP model.  The objective function was used to find the lowest value of 

error for the probability of accepting the ASP model for single and double sampling plans that 

corresponded to the sample size and the acceptable number. Kaya [3] applied a Genetic Algorithm 

(GA)  to determine the sample size of the attribute control chart for a multi- state process.  The 

objective function used to find the minimum cost and the maximum probability of accepting the 

model was found.Kobilinsky and Bertheau [4] presented a cost function for the inspection process 

that depended on the number of inspection groups and sample sizes for single and double ASPs 

based on the manufacturer's risk and the consumer’ s risk.  Cheng and Chen [5 ]  applied the GA 

methods to design a DSP.  These models increased the efficiency of the design ASP and reduced 

errors that impacted on the manufacturer's risk and consumer’ s risk.  Moreover, GA methods were 

applied to find the best information more efficiently and more accurately.  Sampath and Deepa [6] 

designed a DSP by applying the GA methods to determine the optimal sample size and acceptance 
number under the manufacturer's risk and the consumer’ s risk.  Braimah et al.  [7]  evaluated the 

optimal value of a mathematical model to determine the sample size and the random range for the 

ASP. It was found that the condition of these models provided an acceptance number equal to zero. 

 In addition, some researchers have studied the economic aspects of various ASPs. Hsu and 

Hsu [8]  studied the cost aspects of a single ASP in order to evaluate the minimum cost that was 

appropriate for both manufacturers and consumers.  Results showed that the proposed cost model 

was used to inspect a group of defective items. Fallahnezhad and Aslam [9] designed an economic 

model of the ASPs that involved Bayesian inference in which a decision was taken depending on 

the proposed model. Fallahnezhad and Qazvini [10] designed a new economic model of the ASP in 

a two-stage approach based on the Maxima Nomination Sampling (MNS) technique. Fallahnezhad 

et al.  [ 11]  presented an ASP based on the MNS method with current inspection errors.  An 
economical model was proposed in terms of inspection errors and clarified the impact of errors from 

an economic point of view.  

 Currently, most production processes have excellent quality control. It was found that when 

the production process was well inspected, zero defects were more often discovered in sample 

inspections. For this reason, some researchers presented the idea that a zero-inflated Poisson (ZIP) 

distribution was appropriate for the probability distribution of the number of defects. A ZIP 

distribution was presented by Lambert [12], McLachlan and Peel [13]. It was a special type of mixed 

distribution that degenerated at zero and yet was a Poisson distribution. The ZIP distribution was 

applied in many disciplines such as manufacturing, public health, epidemiology, medicine, etc. 

Recently, many researchers developed ASPs with ZIP distributions. Loganathan and Shalini [14] 

considered a single sampling plans (SSP) in which the number of defective items was a ZIP 

distribution. The optimal plan parameters were calculated using unity values. Uma and Ramya [15] 
presented a Quick Switching System (QSS) that fell under a ZIP distribution. Rao and Aslam [16] 

designed resubmitted lots plan in which the number of defects was a ZIP distribution. The 

parameters of the proposed sampling plan were considered based on nonlinear optimization 

solutions. A nonlinear optimization is used to determine the optimal plan parameters of the proposed 

sampling plan.Wang and Hailemariam [17] proposed a repetitive group sampling (RGS) and 

multiple dependent state (MDS) sampling under a ZIP distribution. Moreover, they developed DSP 

and sequential sampling plans for the ZIP distribution. The unity value approach was applied to 

determine the optimal plan parameters of the proposed sampling plans. 

The above-mentioned research showed that the production process was well inspected, the 

zero defects were more discovered in sample inspections. Three important objectives that the 
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manufacturer expected to achieve from an optimal ASP: the lowest cost, the smallest ASN, and the 

highest probability of acceptance. From this idea, a multi-objective optimization is used to find the 

optimal DSP under the proposed process. Furthermore, GA is one of the most popular methods used 

to find the optimal value that provides the best answer to the problem and is flexible enough to solve 

complex problems, like those which are developed for genetic processes [18] .  Many researchers 
indicate that GA can be used to resolve the problem of optimizing in ASP [3, 5, 6]. 

The aim of this research is to design the sample sizes required to achieve an optimal DSP 

with zero-inflated defective data. The optimal parameters for DSP under the ZIP distribution 

(𝐷𝑆𝑃𝑍𝐼𝑃) are calculated to maximize the 𝑃𝑎 and minimize the 𝑇𝐶 and 𝐴𝑆𝑁 simultaneously (multi-

objective function). The MATLAB software (R2019b) [19] is used to provide a simulation study of 

the GA with multi-objective optimization. Additionally, we focus on studying the relationship 

between the required sample sizes and the economic models of the proposed ASP because, in 

practice, smaller value of required sample sizes or ASN are more satisfactory for designing an 

optimal ASP. Therefore, an economic model of 𝐷𝑆𝑃𝑍𝐼𝑃  under multi-objective optimization is also 

considered based on three different scenarios that compare the size of the first sample (𝑛1) and the 

second sample (𝑛2). In illustrations, the ratio of sample size, the different scenarios of the required 

sample sizes, and the optimal OC function of the 𝐷𝑆𝑃𝑍𝐼𝑃  are presented. Real data example were 

applied to determine the optimal plan parameters under proposed 𝐷𝑆𝑃𝑍𝐼𝑃 . 

 

 

2. Materials and Methods 

  

Currently, the number of defective items for many samples will be zero when most production 

processes have excellent quality control, and the production process is well inspected. 

In this situation, the proper probability distribution function of the number of defective items for 

sample inspection is the Zero-Inflated (ZI) distribution. 

  The ZI distribution is a mixture of a process that generates zeros and the other processes 

that are a counted distribution under non-negative integers.  Suppose X is a random variable under 

the ZI distribution, then the probability mass function (pmf) of X is given by 

 

    𝑃(𝑋 = 𝑥|∅, Θ) = ∅𝑓(𝑥) + (1 − ∅)𝑔(𝑥;  Θ)                     (1) 

 

where                 𝑓(𝑥) = {
1, 𝑥 = 0                   
0, 𝑥 = 1,2,3, …      

             (2) 

 

Let ∅ be a zero-inflation parameter,  such that 0 < ∅ < 1, and 𝑔(𝑥;  Θ) is the pmf of  X  with a vector 

of the parameter, Θ = {𝜃1, 𝜃2, … , 𝜃𝑛}. 
  Now, we consider a zero- inflated count model corresponding to the Poisson Binomial 

distribution, called zero-inflated Poisson (ZIP) distribution. Lambert [11], McLachlan and Peel [12] 

proposed the ZIP distribution, which is a special type of of mix of the Bernoulli distribution and 

Poisson distributions.  From the pmf of Poisson distribution is given as 𝑔(𝑥;  𝜆) =
𝑒−𝜆𝜆𝑥

𝑥!
;   𝑥 =

0,1,2, …,  and substituting in eq.(1), then the pmf of ZIP distribution has the form 

   𝑃(𝑋 = 𝑥|∅, 𝜆) = {
∅ + (1 − ∅)𝑒−𝜆 , 𝑥 = 0                   

(1 − ∅)
𝑒−𝜆𝜆𝑥

𝑥!
, 𝑥 = 1,2, …,      

                  (3) 

where 𝜆 = 𝑛𝑝, 𝜆 > 0, 0 < ∅ < 1. Furthermore, the mean and the variance of the ZIP distribution 

are given by 𝜇𝑍𝐼𝑃 = (1 − ∅)λ and 𝜎𝑍𝐼𝑃
2 = λ(1 − ∅)(1 − λ∅) respectively.  
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2.1 Design of the double acceptance sampling plan under ZIP distribution 

 
The double acceptance sampling plan (DSP) requires the specification of four quantities which are 

known as its parameters. These parameters are 𝑛1, 𝑐1, 𝑛2 and 𝑐2. In a DSP, the decision of accepting 

or rejecting a lot is taken based on two samples.  

  1.  The first sample:  the lot is accepted if the number of defective units (𝑑1) in the first 

sample is less than the acceptance number 𝑐1. 

 2. The second sample:  the lot is accepted if the number of defective units (𝑑1 + 𝑑2) in 

both samples is greater than 𝑐1 and less than or equal to the acceptance number 𝑐2. 

  Therefore, if 𝑃𝑎
1 and 𝑃𝑎

2 denote the probabilities of accepting a lot on the first sample and 

the second sample, as shown in eq.(4) and eq.(5), respectively, then the probability of accepting a 

lot (𝑃𝑎) of 𝑝 is given by equation (6). 

 

    𝑃𝑎
1(𝑝) = 𝑃(𝑑1 ≤ 𝑐1: 𝑛1)            (4) 

 

    𝑃𝑎
2(𝑝) = 𝑃(𝑐1 < 𝑑1 ≤ 𝑐2: 𝑛1) × 𝑃(𝑑1 + 𝑑2 ≤ 𝑐2: 𝑛2)           (5) 

 

𝑃𝑎(𝑝) = 𝑃𝑎
1(𝑝) + 𝑃𝑎

2(𝑝)            (6) 

 

In this section, the optimal DSP under the ZIP distribution (𝐷𝑆𝑃𝑍𝐼𝑃) is described.  From 

eq.(3) and eq.(6), the probability of accepting a lot for ZIP distribution is given in eq.(7). 

 
𝑃𝑎(𝑝) = ∅ + (1 − ∅)𝑒−𝜆1

+ ∑ (1 − ∅)
𝑒−𝜆1𝜆1

𝑑1

𝑑1!

𝑐1

𝑑1=1

+ ∑ {[(1 − ∅)
𝑒−𝜆1𝜆1

𝑑1

𝑑1!
] × [∅ + (1 − ∅)𝑒−𝜆2 + ∑ (1 − ∅)

𝑒−𝜆2𝜆2
𝑑2

𝑑2!

𝑐2−𝑑1

𝑑2=1

]}

𝑐2

𝑑1=𝑐1+1

 

 

Moreover, the average sample number function (𝐴𝑆𝑁) of the 𝐷𝑆𝑃𝑍𝐼𝑃  is given in eq. (8). 

 

    𝐴𝑆𝑁 = 𝑛1 + 𝑛2(1 − 𝑃𝐼) 

 = 𝑛1 + 𝑛2 ∑ (1 − ∅)
𝑒−𝜆1𝜆1

𝑑1

𝑑1!

𝑐2
𝑑1=𝑐1+1            (8) 

 

where 𝑃𝐼 is the probability of deciding on the acceptance or rejection of the lot on the first sample 

and is given by 𝑃𝐼 = 𝑃(𝑑1 ≤ 𝑐1: 𝑛1) + 𝑃(𝑑1 > 𝑐2: 𝑛1). 

 

2.2 Total cost function of DSP 
 
In this section, the total cost function of the product inspection of a lot for the DSP plan under ZI 

distribution is discussed. In this research, three different types of costs are considered: cost of 

inspection per lot, cost of internal failure per lot, and cost of an outgoing defective per lot, as 

presented in eq. (9). 

 

𝑇𝐶 = 𝐶𝐼 (𝑛1𝑃𝑎
1(𝑝) + (𝑛1 + 𝑛2)𝑃𝑎

2(𝑝) + 𝑁(1 − 𝑃𝑎(𝑝))) 

               +𝐶𝐹 ((𝑛1 + 𝑛2)𝑝 + (1 − 𝑃𝑎(𝑝))(𝑁 − (𝑛1 + 𝑛2))𝑝) 

    +𝐶𝑂(𝑃𝑎(𝑝)(𝑁 − (𝑛1 + 𝑛2))𝑝).                           (9) 

(7) 
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where 𝐶𝐼 is the cost of inspection per unit, 𝐶𝐹 is the cost of the internal failure per unit, and 𝐶𝑂 is 

the cost of an outgoing defective per unit.The component of the total cost function for the inspection 

of a lot for the DSP under the ZIP distribution can be expressed as follows: 

 

First- term denotes the cost of inspection per lot, where 𝑛1𝑃𝑎
1(𝑝) + (𝑛1 + 𝑛2)𝑃𝑎

2(𝑝) +
𝑁(1 − 𝑃𝑎(𝑝)) represents the expected number of units inspected per lot.  

Second- term denotes the cost of the internal failure per lot, where (𝑛1 + 𝑛2)𝑝 +
(1 − 𝑃𝑎(𝑝))(𝑁 − (𝑛1 + 𝑛2))𝑝 represents the expected number of defective items detected 

per lot. 

Third- term denotes the cost of an outgoing defective per lot, where 𝑃𝑎(𝑝)(𝑁 −

(𝑛1 + 𝑛2))𝑝 represents the expected number of defective items not detected per lot. 

 

 

3. Results and Discussion 
 

In this section, the optimal parameters of the 𝐷𝑆𝑃𝑍𝐼𝑃  are calculated to achieve the minimum value 

of 𝑇𝐶 and 𝐴𝑆𝑁 when the maximum probability of accepting a lot is received.  The MATLAB 

software ( R2019b)  is used to perform a simulation study of the GA with multi-objective 

optimization. In the optimal solution of 𝐷𝑆𝑃𝑍𝐼𝑃 , the minimum of the 𝑇𝐶 and 𝐴𝑆𝑁 is calculated by 

considering the optimal values of 𝑛1, 𝑛2, 𝑐1 and 𝑐2.  The constraints of the producer’s risk (𝛼) and 

the consumer’s risk (𝛽) are satisfied immediately by the provision of the acceptable quality level 
(𝐴𝑄𝐿) and the lot tolerance percent defective (𝐿𝑇𝑃𝐷).  In practice, the constraints of 𝛼 and 𝛽 are 

satisfied immediately when 𝐴𝑄𝐿 and 𝐿𝑇𝑃𝐷 are provided. For the effectiveness of the proposed 

sampling plan, two points (𝐴𝑄𝐿, 1 − 𝛼) and (𝐿𝑇𝑃𝐷, 𝛽) are considered for changes on the OC curve. 

A manufacturer intends that the probability of acceptance of a lot of items should be greater than 

1 − 𝛼 at the quality level of 𝐴𝑄𝐿.  In reality, a customer requests that the probability of the lot 

acceptance should be less than 𝛽 at 𝐿𝑇𝑃𝐷.  In the optimization technique, the optimal solution is 

considered on three objective functions simultaneously. 

 

Multi-objective function 

   Minimize
 

𝑇𝐶 and 𝐴𝑆𝑁            (10) 

   Maximize 𝑃𝑎(𝑝)             (11) 

    

Subject to: 𝑃𝑎(𝐴𝑄𝐿) ≥ 1 − α and 𝑃𝑎(𝐿𝑇𝑃𝐷) ≤ 𝛽, 

   𝑛1 + 𝑛2 ≤ 𝛿𝑁, 𝑛1 > 0, 𝑛2 > 0, 

   𝑐1 ≥ 0, 𝑐2 > 0 and 𝑐2 > 𝑐1 ≥ 0.  

 
The following input parameters are used to design the proposed illustrations.  Some input 

parameters are assigned the same values for the proposed illustrations, that is the lot size  𝑁 =
1,000, the proportion of sample size from lot size 𝛿 = (0.10,0.20), the producer's risk 𝛼 = 0.05, 
and the consumer's risk  𝛽 = 0.01. Furthermore, the input parameters of the cost function are given 

[8] :  𝐶𝐼 = 1, 𝐶𝐹 = 2, and 𝐶𝑂 = 10, respectively.  Some input parameters are assigned the different 

values for each sample illustrations as shown in Table 1, that is,  the proportion of defective (𝑝), the 

zero- inflation parameter (∅), the acceptable quality level (𝐴𝑄𝐿), and the lot tolerance percent 

defective (𝐿𝑇𝑃𝐷).  Most studies presented a comparison between different values of 𝐴𝑄𝐿  and 

𝐿𝑇𝑃𝐷 used to find the optimal ASP [4-11, 15-17].   
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Table 1. Input parameters used to design the proposed illustrations 

 

Input 

parameter 

Illustration 1 Illustration 2 Illustration 3 

𝑝 0.01 0.05 0 to 0.20 

∅ 0.001,0.01,0.05,0.10 0.01,0.05,0.10,0.20,0.30, 0.40, 0.50 0.01,0.05,0.10 

𝐴𝑄𝐿 0.01,0.05 0.05 0.05 

𝐿𝑇𝑃𝐷 0.05,0.075,0.10 0.10 0.10 

 

3.1 Illustration 1: The three conditions of the ratio of sample size 
 

From eq.(8) and eq.(9), we can see that the values of  𝑇𝐶  and  𝐴𝑆𝑁  of the  𝐷𝑆𝑃𝑍𝐼𝑃   depend on the 

required sample sizes (𝑛1, 𝑛2). Therefore, in this illustration, the sensitivity analysis of the required 

sample sizes (𝑛1, 𝑛2) is considered based on two constraints of the proportion of sample size from 

lot size  (𝛿) by assigned that 𝛿 = 0.10 (𝑛1 + 𝑛2 ≤ 100) , and 𝛿 = 0.20 (𝑛1 + 𝑛2 ≤ 200), 
respectively.  

Moreover, the ratio of sample size, 𝑟 =
𝑛1

𝑛2
, is used to measure of discrimination of the 

𝐷𝑆𝑃𝑍𝐼𝑃  that is concerned with the required sample sizes. There are three conditions of the ratio of 

sample size:  𝑟 = 1 or 𝑛1 = 𝑛2, 𝑟 > 1 or 𝑛1 > 𝑛2, and 𝑟 < 1 or 𝑛1 < 𝑛2.  
Depending on the above, the following multi-objective optimization problem is solved to 

determine the optimal plan parameters (𝑛1, 𝑛2, 𝑐1, 𝑐2)∗ of the 𝐷𝑆𝑃𝑍𝐼𝑃  as per eq. (10)  and eq. (11) . 

Referring to the numerical of this illustration from Table 1, suppose 𝑝 = 0.01 and 𝑃𝑎(0.01) = 0.99 

under the different combinations of ∅ = (0.001,0.01,0.05,0.10), 𝐴𝑄𝐿 = (0.01,0.05), and  

𝐿𝑇𝑃𝐷 = (0.05,0.075,0.10). 

From Table 2, the sensitivity analyses of (𝑛1, 𝑛2, 𝑐1, 𝑐2) under the 𝐷𝑆𝑃𝑍𝐼𝑃  are shown by 

considering two constraints of the required sample sizes  (𝛿) and three conditions of the ratio of 

sample size  (𝑟). The investigating values are given as follows. 

1. Based on two constraints of the required sample sizes with  ∅ = 0.01 and  𝐴𝑄𝐿 = 0.01, 

the results show that when 𝐿𝑇𝑃𝐷 increases the value of 𝑇𝐶 and 𝐴𝑆𝑁 decrease.  Furthermore,  𝑟 

further approaches to 1 when 𝐿𝑇𝑃𝐷 increases. 

2. When  ∅  increases under the same values of 𝐴𝑄𝐿 and 𝐿𝑇𝑃𝐷 , the results are not 

different, that is, the more ∅ increases  𝑟 also approachs 1. 

3. Two constraints of the required sample sizes for the same values of ∅, 𝐴𝑄𝐿 and 𝐿𝑇𝑃𝐷 

are considered. The results indicate that the first constraint (𝑛1 + 𝑛2 ≤ 100) is given a smaller value 

of 𝑇𝐶 and 𝐴𝑆𝑁 than the second constraint (𝑛1 + 𝑛2 ≤ 200) with 𝑃𝑎(0.01) = 0.99. On the other 

hand, the second constraint is given a smaller 𝑟 than the first constraint respectively.  This means 

that 𝑇𝐶 and 𝐴𝑆𝑁 further decrease when the value of 𝑟 approaches 1. 

For both constraints of the required sample sizes, it can interpret that when  𝐴𝑄𝐿 = 0.05, 

𝐿𝑇𝑃𝐷 = 0.10 , and ∅=0.10, the value of 𝑟 approaches 1. This means that the required sample sizes 

should be equal  (𝑛1 =  𝑛2) which provides the maximum value of 𝑃𝑎, and the minimum value of 

𝑇𝐶 and 𝐴𝑆𝑁. 

 

3.2 Illustration 2: The optimal solution under three different scenarios of the required 

sample sizes 
 
In the general sampling system, the user expects that the smaller value of required sample sizes 
(𝑛1, 𝑛2) or 𝐴𝑆𝑁 would be more satisfactory for designing the optimal ASP. So, this illustration aims  

 



 
 

 

 

 

Table 2. Optimal parameters of the 𝐷𝑆𝑃𝑍𝐼𝑃  for the minimum value of 𝑇𝐶 and 𝐴𝑆𝑁 under the constraints of the required sample sizes with       

𝑝 = 0.01 and suppose that 𝑃𝑎(0.01) = 0.99 

𝑨𝑸𝑳 ∅ 𝑳𝑻𝑷𝑫 𝒏𝟏 + 𝒏𝟐 ≤ 𝟏𝟎𝟎 𝒏𝟏 + 𝒏𝟐 ≤ 𝟐𝟎𝟎 

𝒏𝟏 𝒏𝟐 𝒄𝟏 𝒄𝟐 𝒓 𝑻𝑪 𝑨𝑺𝑵 𝒏𝟏 𝒏𝟐 𝒄𝟏 𝒄𝟐 𝒓 𝑻𝑪 𝑨𝑺𝑵 

 

 

 

 

 

 

0.01 

 
0.001 

0.05 81 19 2 8 4.26 218 81.00 145 52 3 5 2.79 269 145.65 

0.075 71 22 2 3 3.23 186 71.18 90 67 3 8 1.34 198 90.01 

0.10 55 32 2 4 1.72 157 55.07 53 60 2 4 0.88 161 53.12 

 0.05 82 16 2 3 5.13 220 82.20 148 52 3 9 2.85 277 148.00 

0.01 0.075 66 18 2 3 3.67 185 66.45 98 73 3 6 1.34 198 98.00 

 0.10 55 44 2 4 1.25 151 55.0 55 85 2 4 0.65 161 55.18 

 
0.05 

0.05 81 12 2 3 6.75 216 81.45 137 26 3 4 5.27 262 137.91 

0.075 65 35 2 3 1.86 182 65.80 83 87 2 4 0.95 201 83.71 

0.10 55 43 2 3 1.28 164 55.66 63 72 2 4 0.88 164 63.23 

 
0.10 

0.05 81 19 2 3 4.26 212 80.63 143 56 3 5 2.55 263 143.61 

0.075 63 32 2 4 1.97 201 77.12 110 76 3 5 1.45 210 110.31 

0.10 52 47 3 4 1.10 179 80.14 51 85 1 3 0.60 195 52.01 

 
 

 

 

 

 

0.05 

 
0.001 

0.05 90 10 2 5 9.00 230 90.02 158 42 4 8 3.76 261 158.01 

0.075 51 42 2 4 1.21 154 51.07 81 68 4 6 1.19 174 81.01 

0.10 44 54 3 5 0.81 137 44.01 41 103 2 4 0.40 139 41.08 

 

0.01 

0.05 89 11 2 5 8.09 228 89.02 155 45 3 5 3.44 288 155.72 

0.075 55 18 2 4 3.06 162 55.04 66 68 3 7 0.97 162 66.01 

0.10 44 46 3 6 0.96 137 44.01 43 104 3 7 0.41 136 43.00 

 

0.05 

0.05 51 49 1 3 1.04 199 51.60 116 84 2 4 1.38 265 117.89 

0.075 52 41 2 4 1.27 155 52.10 68 41 3 5 1.66 164 68.02 

0.10 36 48 2 5 0.75 133 36.01 58 92 4 6 0.63 142 58.01 

 

0.10 

0.05 87 13 2 5 6.69 226 87.02 109 21 2 5 5.19 268 109.08 

0.075 52 41 2 4 1.27 155 52.07 66 42 3 5 1.57 161 66.02 

0.10 35 48 2 4 0.73 131 35.02 58 75 4 6 0.77 150 58.01 
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to minimize the required sample sizes (𝑛1, 𝑛2) under the optimal parameters of the 𝐷𝑆𝑃𝑍𝐼𝑃 .  Based  

on this reason, the conditions of the required sample sizes (𝑛1, 𝑛2) are considered as the constraints 

to find the optimal 𝐷𝑆𝑃𝑍𝐼𝑃  to achieve the maximum value of 𝑃𝑎 and the minimum value of 𝑇𝐶 and 

𝐴𝑆𝑁 simultaneously.  

In this illustration, a comparison between the size of the first sample (𝑛1) and the second 

sample (𝑛2) is considered.  The smaller value of sample size (𝑛1, 𝑛2) or 𝐴𝑆𝑁 is always more 

satisfactory for designing the optimal ASP.  

There are three different scenarios of the required sample sizes (𝑛1, 𝑛2) used to find the 

optimal multi-objective function of a 𝐷𝑆𝑃𝑍𝐼𝑃  as follows. 

   Scenario1 (S1):  𝑛1 = 𝑛2 and  𝑛1 + 𝑛2 ≤ 𝛿𝑁(𝑟 = 1)  

   Scenario2 (S2):  𝑛1 > 𝑛2 and  𝑛1 + 𝑛2 ≤ 𝛿𝑁(𝑟 > 1) 
   Scenario3 (S3):  𝑛1 < 𝑛2  and 𝑛1 + 𝑛2 ≤ 𝛿𝑁(𝑟 < 1) 

 The maximum value of 𝑃𝑎(𝑝) and the minimum value of  𝑇𝐶 and 𝐴𝑆𝑁 can be determined 

by solving eq.10 and eq.11, with a given input parameter from Table 1. Suppose 𝐴𝑄𝐿 = 0.05, and 

𝐿𝑇𝑃𝐷 = 0.10 based on the reasons from the Illustration 1, the optimal parameters (𝑛1, 𝑛2, 𝑐1, 𝑐2)∗ 

of the 𝐷𝑆𝑃𝑍𝐼𝑃  are determined by satisfying two inequalities, 𝑃𝑎(𝐴𝑄𝐿) ≥ 1 − α and 𝑃𝑎(𝐿𝑇𝑃𝐷) ≤ 𝛽, 
and three scenarios of the required sample sizes as mentioned above. 

From Table 3, the main goal is achieved (the maximum 𝑃𝑎 and the minimum 𝑇𝐶 and 𝐴𝑆𝑁) 

by obtaining the optimal values of (𝑛1, 𝑛2, 𝑐1, 𝑐2)∗ under the 𝐷𝑆𝑃𝑍𝐼𝑃 .  The investigating values are 

given as follows. 

1.  Based on three different scenarios of (𝑛1, 𝑛2) with 𝛿 = 0.10(𝑛1 + 𝑛2 ≤ 100), and 𝛿 =
0.20(𝑛1 + 𝑛2 ≤ 200) , when ∅ increases, the value of 𝑃𝑎 tends to increase while 𝑇𝐶 tends to 

decrease. 

2.  The three different scenarios of (𝑛1, 𝑛2) are compared under the same value of  𝛿 and 

∅. The results show that S1, (𝑛1, 𝑛2, 𝑐1, 𝑐2)∗ = (50,50,1,2)∗, provides the lowest 𝑇𝐶 and highest 𝑃𝑎, 

whereas S3, (𝑛1, 𝑛2, 𝑐1, 𝑐2)∗ = (40,60,0,2)∗ provides the lowest 𝐴𝑆𝑁.  

3.  Considering under the same scenario, when 𝛿 increases under the same value of ∅, the 

value of 𝑃𝑎 is increasing while the value of 𝑇𝐶 and 𝐴𝑆𝑁 is decreasing. 

It can interpret that the optimal required sample sizes is Scenario 1 (𝑛1 = 𝑛2) because S1 

provides the lowest 𝑇𝐶  and highest 𝑃𝑎 and these parameters are an important factor in the 

construction of the optimal 𝐷𝑆𝑃𝑍𝐼𝑃 .  Moreover, the smaller of required sample sizes ( lower 𝛿) 

provides the optimal 𝐷𝑆𝑃𝑍𝐼𝑃  . 

 

3.3 Illustration 3: The optimal OC function of the 𝑫𝑺𝑷𝒁𝑰𝑷 
 

Illustration 2 indicates that the required sample sizes of the first and second sampling should be the 

smallest and equal values (𝑛1 = 𝑛2).  In this illustration, the input parameters are assigned from 

Table 1. The performances of the 𝐷𝑆𝑃𝑍𝐼𝑃  with different values of  ∅ under the optimal scenario (S1) 

are presented in Figures 1-3.  The OC curves of  𝐷𝑆𝑃𝑍𝐼𝑃  are shown in Figure 1 when 
(𝑛1, 𝑛2, 𝑐1, 𝑐2)∗ = (50,50,1,2)∗. Other than that, the OC curves of  𝐷𝑆𝑃𝑍𝐼𝑃  are compared with 𝐷𝑆𝑃𝑃  

. Suppose 𝐷𝑆𝑃𝑃  is the DSP under traditional  Poisson distribution.  

  From Figure 1, for the same value of 𝑝 and a different value of ∅, the results indicate that 

a higher value of  ∅ under 𝐷𝑆𝑃𝑍𝐼𝑃  provides the larger 𝑃𝑎.  Based on the same condition of optimal 
(𝑛1, 𝑛2, 𝑐1, 𝑐2)∗, 𝐷𝑆𝑃𝑍𝐼𝑃  gives a larger 𝑃𝑎 than 𝐷𝑆𝑃𝑃  for each value of 𝑝.  In practice, an optimal 

sampling plan should give a small 𝐴𝑆𝑁.  From Figure 2, it can be seen that 𝑝 = 0.04 gives the 

maximum value of 𝐴𝑆𝑁 of all the proposed sampling plans. Moreover, a larger of  ∅ under 𝐷𝑆𝑃𝑍𝐼𝑃   
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Table 3.  The optimal solution of  𝐷𝑆𝑃𝑍𝐼𝑃  under three different scenarios of the required sample 

sizes 

 

𝜹 

 

∅ 

S1 S2 S3 

(𝟓𝟎, 𝟓𝟎, 𝟏, 𝟐)∗ 

 

(𝟔𝟎, 𝟒𝟎, 𝟏, 𝟐)∗ (𝟒𝟎, 𝟔𝟎, 𝟎, 𝟐)∗ 

  𝑷𝒂 𝑻𝑪 𝑨𝑺𝑵 𝑷𝒂 𝑻𝑪 𝑨𝑺𝑵 𝑷𝒂 𝑻𝑪 𝑨𝑺𝑵 

 

 

 

0.10 

0.01 0.2944 924 62.70 0.2071 977 68.87 0.1836 990 56.08 

0.05 0.3229 913 62.18 0.2392 963 68.51 0.2150 976 55.43 

0.10 0.3586 887 61.54 0.2792 942 68.07 0.2545 946 54.62 

0.20 0.4298 844 60.26 0.3593 890 67.17 0.3341 901 52.99 

0.30 0.5011 808 58.98 0.4394 847 66.27 0.4145 855 51.37 

0.40 0.5724 764 57.70 0.5195 796 65.38 0.4958 801 49.74 

0.50 0.6436 721 56.41 0.5996 752 64.48 0.5778 754 48.12 

  

 
(𝟏𝟎𝟎, 𝟏𝟎𝟎, 𝟐, 𝟒)∗ (𝟏𝟐𝟎, 𝟖𝟎, 𝟐, 𝟒)∗ (𝟖𝟎, 𝟏𝟐𝟎, 𝟏, 𝟑)∗ 

 

 

 

 

0.20 

 𝑷𝒂 𝑻𝑪 𝑨𝑺𝑵 𝑷𝒂 𝑻𝑪 𝑨𝑺𝑵 𝑷𝒂 𝑻𝑪 𝑨𝑺𝑵 

0.01 0.1380 1024 117.37 0.0778 1056 130.60 0.1028 1038 102.21 

0.05 0.1727 1001 116.67 0.1148 1039 130.17 0.1309 1020 102.27 

0.10 0.2160 978 115.79 0.1611 1007 129.64 0.1842 987 101.10 

0.20 0.3027 924 114.04 0.2538 957 128.57 0.2747 935 98.76 

0.30 0.3896 878 112.28 0.3466 907 127.50 0.3652 884 96.41 

0.40 0.4765 823 110.53 0.4395 857 126.42 0.4557 825  94.07 

0.50 0.5635 777 108.77 0.5326 799 125.35 0.5463 773 91.72 

 
 

 

 
 

Figure 1. The optimal OC function of the 𝐷𝑆𝑃𝑍𝐼𝑃  under optimal plan (50,50,1,2)∗ 
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Figure 2. The optimal 𝐴𝑆𝑁 curves of the 𝐷𝑆𝑃𝑍𝐼𝑃  under optimal plan (50,50,1,2)∗ 

 

 

 
 

Figure 3. The optimal total cost of the 𝐷𝑆𝑃𝑍𝐼𝑃  under optimal plan (50,50,1,2)∗ 

 

 

provides smaller 𝐴𝑆𝑁.  From Figure 3, the results show that  larger values of  ∅ under 𝐷𝑆𝑃𝑍𝐼𝑃  

provides the lower 𝑇𝐶 for 0 < 𝑝 ≤ 0.13. Furthermore, the OC function under the optimal plans 
(50,50,1,2)∗ and (100,100,2,4)∗ are compared in Figure 4. The result indicates that for  𝑝 = 0.01, 
the optimal plan (100,100,2,4)∗ has a slightly larger 𝑃𝑎 than (50,50,1,2)∗. On the other hand, when 

𝑝 increase, the optimal plans (50,50,1,2)∗ has a slightly larger 𝑃𝑎 than (100,100,2,4)∗. 
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Figure 4. A comparison of the OC function under the optimal plans(50,50,1,2)∗and 
(100,100,2,4)∗ 

 

3.4 Real data application 
 

In this section, a real dataset with excess zero counts is the number of read-write errors discovered 

in a computer hard disk in a manufacturing process (see Xie et al. [20]) as shown in Figure 5. This 

data set includes a total of 208 samples with a mean of 1.16 and a standard deviation of 1.20. From 

this dataset, the input parameters are calculated as follows:  
 

∅ =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜 𝑣𝑎𝑙𝑢𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
= 0.87, 𝑝 = 0.006,  and  𝑁 = 208. 

 

Some of the input parameters  are assigned by the user: 

 

𝛿 = (0.10,0.20), 𝛼 = 0.05,  𝛽 = 0.01, 𝐴𝑄𝐿 = 0.05, 𝐿𝑇𝑃𝐷 = 0.10, 𝐶𝐼 = 1, 𝐶𝐹 = 2, and 𝐶𝑂 = 10. 

 

  Substituting input parameters in  multi-objective optimization using GA methods, we then 

obtained the optimal plan parameters (𝑛1, 𝑛2, 𝑐1, 𝑐2)∗.The result shows that at 𝛿 = 0.10 (𝑛1 + 𝑛2 ≤
20), the optimal plan parameters are (10,10,0,2) which provide the optimal solution 𝑃𝑎 = 0.9917, 
𝑇𝐶 = 37, and 𝐴𝑆𝑁 = 10.27. However, for 𝛿 = 0.20 (𝑛1 + 𝑛2 ≤ 40), the optimal plan parameters 

are (20,20,0,1),  which provide an optimal solution 𝑃𝑎 = 0.9911, 𝑇𝐶 = 47, and 𝐴𝑆𝑁 = 20.95 . 

 



 
 

Current Applied Science and Technology Vol. 21 No. 2 (April-June 2021) 

 

238 

 

 
 

Figure 5. Number of read-write errors discovered in a computer hard disk 
 

 

4. Conclusions 

 

Nowadays, It can be observed that when the production processes are well inspected, zero defects 

are often found in sample inspections.  There are many ways to achieve the optimal DSP that is 

affected by zero- inflated data.  In this research, the proposed method was modified to make an 
optimal decision for the manufacturer.  The optimal parameters were proposed to maximize the 

𝑃𝑎(𝑝) and minimize the 𝑇𝐶 and 𝐴𝑆𝑁 simultaneously. The proposed method was designed based on 

three different scenarios of the required sample sizes using multi-objective optimization with GA 

methods.  

In conclusion, according to the proposed method, the result indicates that the values of 

𝑃𝑎(𝑝), 𝑇𝐶 and 𝐴𝑆𝑁 under the 𝐷𝑆𝑃𝑍𝐼𝑃  depend on the required sample sizes. Based on the same 

value of 𝐴𝑄𝐿 and 𝐿𝑇𝑃𝐷, when ∅ increases, the smaller value of required sample sizes provides the 

optimal 𝐷𝑆𝑃𝑍𝐼𝑃  to achieve maximum value of the 𝑃𝑎(𝑝) and minimum value of the 𝑇𝐶 and 𝐴𝑆𝑁. 

Furthermore, under 3 different scenarios of the required sample sizes, we found that the first sample 
(𝑛1) and the second sample (𝑛2) should be equal (𝑛1 = 𝑛2). The performance of the 𝐷𝑆𝑃𝑍𝐼𝑃  is 

considered by the OC function with a different value of ∅  based on 𝑛1 = 𝑛2 scenario.  The results 

indicate that the 𝐷𝑆𝑃𝑍𝐼𝑃  provides more performance when ∅ is increased.  Furthermore, under the 

same condition, 𝐷𝑆𝑃𝑍𝐼𝑃  provides more performance than the 𝐷𝑆𝑃𝑃  in each value of 𝑝. 

To apply the proposed methods, the manufacturer should know some necessary values of 

input parameters such as lot size, the proportion of defect per lot, cost per unit, etc.  In future work, 

the proposed method can be applied to optimize multiple acceptance sampling plans. Moreover, the 

proposed method can be extended under other zero- inflated distributions such as the zero- inflated 
Negative binomial distribution. 
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