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Abstract
The double acceptance sampling plan (DSP) is wildly used tools for the decision of production quality control. 
In actually, most production processes have excellent quality control and well inspected, the number of defective 
items for many samples will be zero. For this reason, the traditional probability distribution is not appropriate  
for the DSP. This research proposed the DSP for the manufacturing that was affected by zero-inflated and 
over-dispersed count data. The number of defects for a sample inspection is considered under the zero-inflated 
Negative Binomial (ZINB) distribution. The required sample sizes (n1, n2) are designed to achieve the optimal 
plan parameter of (n1, n2, c1, c2)* the DSP under the ZINB distribution (DSPZINB). The Genetic Algorithm with 
multi-objective optimization is used to estimate the optimal plan parameters which are maximizing the probability  
of accepting a lot (Pa) and minimizing the total cost of inspection (TC) and the average number of samples 
(ASN) simultaneously. The sensitivity analysis of the required sample size is used to analyze the performance of 
the proposed DSPZINB which is presented through three numerical examples. The results showed that a smaller 
of required sample sizes and n1 < n2 are provide the optimal plan parameters to achieve the minimum and  
maximum value of the multi-objective function. Moreover, the proposed DSPZINB give a good performance when 
a shape parameter of ZINB distribution (k) is small and approaches zeros while a zero-inflation parameter (ϕ) 
is a large value.  

Keywords: The double acceptance sampling plan, Zero-inflated negative binomial distribution, Over-dispersion, 
Genetic algorithm, Multi-objective optimization
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1 Introduction

The one important tool in the product control technique 
is an acceptance sampling plan (ASP). The ASP is  
applied in many departments to inspect the quality such 
as raw materials, some partial products of the production  
process, and finished products. This technique helps 

consumers decide to accept or reject a product which is 
produced by manufacturers based on sampling results 
selected from a lot. Users can decide to choose the 
minimum sample size from a sampling plan to achieve 
the acceptance criteria and not acceptable for that lot. 
Dodge and Romig's tables are widely used to decide 
for a sampling plan in which users know the lot size, 

Please cite this article as: W. Bamrungsetthapong and P. Charongrattanasakul, “Designing of double  
acceptance sampling plan for zero-inflated and over-dispersed data using multi-objective optimization,”  
Applied Science and Engineering Progress, vol. 14, no. 3, pp. 338–347, Jul.–Sep. 2021, doi: 10.14416/ 
j.asep.2020.10.004.

http://dx.doi.org/10.14416/j.asep.2020.10.004
http://dx.doi.org/10.14416/j.asep.2020.10.004
http://dx.doi.org/10.14416/j.asep.2020.10.004


339

W. Bamrungsetthapong and P. Charongrattanasakul, “Designing of Double Acceptance Sampling Plan for Zero-inflated and Over-dispersed 
Data Using Multi-objective Optimization.”

Applied Science and Engineering Progress, Vol. 14, No. 3, pp. 338–347, 2021

percent nonconforming of a lot, producer’s risk, and 
consumer’s risk for the production process [1]. The 
single sampling plan (SSP) is easy to use but usually 
results in a larger average number of items inspected 
than the other sampling plan such as the DSP [2]. 
Moreover, manufacturers prefer to use the DSP for 
sampling inspection than the SSP, if they want to make 
a clear and precise decision on acceptance or rejection 
lots. In practice, some necessary values are unknown, 
then they cannot choose the optimal ASP. This problem 
can affect the total cost of the inspection.
 Recently, many researchers have studied the  
determination of optimal ASP model using optimization  
techniques as follows. Duarte and Saraiva [3] proposed 
a method to find the optimal value of the ASP model. 
The objective function is finding the lowest value of 
error for the probability of accepting the ASP model 
for single and double sampling plans corresponding 
to the sample size and the acceptable number. Kaya 
[4] uses a Genetic Algorithm (GA) to determine 
the sample size of the attribute control chart for a  
multi-state process in which the objective function is 
finding the minimum cost and the maximum probability  
of accepting the model. Kobilinsky and Bertheau [5] 
presented a cost function for the inspection process 
depend on the number of inspection groups and sample  
sizes for single and double which are based on the 
manufacturer's risk and the consumer’s risk. Cheng and 
Chen [6] applied the GA methods to design the DSP. 
These models increase the efficiency of the design 
ASP and reduce errors of the manufacturer's risk and  
consumer’s risk. Moreover, GA methods can help to 
find the best information more efficiently and more  
accurately. Sampath and Deepa [7] presented the DSP 
using the GA method to determine the optimal sample 
size and acceptance number under the manufacturer's 
risk and the consumer’s risk. Braimah et al.[8] evaluated  
the optimal value of the mathematical model to  
determine the sample size and the random range for 
the ASP. The condition of the model is the acceptance 
number equal to zero. 
 There are 3 important objectives that the manufacturer  
expects to achieve from the optimal ASP: the lowest 
cost, the smallest ASN, and the highest probability 
of acceptance. Also, some researchers have studied 
the economic model of various ASPs, such as, Hsu 
[9] proposed the cost model of the single ASP to 
evaluate the minimum cost that is appropriate for both 

manufacturers and consumers. The study found that 
the proposed cost model is used to inspect a defective 
of items. Fallahnezhad and Aslam [10] designed an 
economic model of the ASPs under Bayesian inference. 
The decision to receive the lot depends on the proposed 
model. Fallahnezhad and Qazvini[11] designed a new 
economic model of the ASP in a two-stage approach 
based on the Maxima Nomination Sampling (MNS) 
technique. Fallahnezhad et al. [12] presented the ASP 
based on the MNS method in the current inspection 
errors. An economical model is proposed in terms of 
inspection errors and investigated the impact of errors 
from an economical point of view.
 Currently, most production processes have  
excellent quality control. It was found that when the  
production process is well inspected, the zero defects 
are more discover in sample inspections. For this reason,  
some researchers presented that a zero-inflated Poisson 
(ZIP) distribution is appropriated for the probability 
distribution of the number of defects. There are some 
researchers, such as [13]–[16], designed the inspection 
process when the number of defective items is a ZIP 
distribution. Also, the optimal plan parameters under 
several sampling plans are presented.
 In the real situation, count data are zero-inflation 
(extra zeroes) and overdispersion (variance larger than 
mean). So, some researchers such as Ridout et al. [17] 
and Fang [18] study the performance between the 
model of ZIP regression and ZINBregression where 
the count data are overdispersed. They claim that a 
ZINB distribution is more flexible for ZIP distribution.  
Arianna et al. [19] study the microbial data characterized  
by an excess of zero counts based on ZIP distribution 
and ZINB distribution. Wang and Hailemariam [20] 
present three new sampling plans when the number 
of samples in the food industry excess of zeros. The 
performance of the proposed sampling plan is studied 
under the ZINB distribution. 
 The above-mentioned research can be interpreted  
that three important objectives function that the  
manufacturers expect to achieve from the optimal ASP: 
the highest probability of acceptance, the lowest cost, 
and the smallest ASN. This research aims to design 
the required sample sizes to achieve the optimal plan  
parameter of the proposed DSPZINB under three objective  
functions simultaneously. The sensitivity analysis 
is used to evaluate the performance of the proposed 
DSPZINB. A method of the GA with multi-objective 
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optimization is applied for the simulation study using 
MATLAB sofware [21]. The rest of paper is organized  
as follows: Section 2 explains the brief concept 
of the ZINB distribution, the method of designing 
the proposed DSPZINB, and the total cost function.  
Simulation results are presented and analyzed in Section 3.  
Finally, conclusions are presented in Section 4.

2 Material and Methods

2.1  Zero-inflated Negative Binomial distribution

Currently, the number of defective items for many 
samples will be zero when most production processes 
have excellent quality control and the production 
process is well inspected. Under the above situation, 
the proper probability distribution function of the 
number of defective items for sample inspection is 
the Zero-Inflated (ZI) distribution. The ZI distribution 
is a mixture between the process generates zeros and 
the other processes that are a count distribution under 
non-negative integers. Suppose X is a random variable 
under the ZI distribution, then the probability mass 
function (pmf) of Xis given by [Equations (1) and (2)]

 (1)

where   (2)

 Let ϕ be a zero-inflation parameter, 0 < ϕ < 1, 
and g(x; Θ)is the probability mass function (pmf) of 
X with a vector of the parameter, Θ = {θ1, θ2,…, θn}.
 In this study, we consider zero-inflated count 
models corresponding to the Negative-Binomial 
(NB) distribution called ZINB distribution. The NB  
distribution is given by Arianna et al. [19], the pmf of 
NB distribution is given as Equation (3).

 (3)

where x is failure that occurs in a sample unit and Γ(.) 
is the complete gamma function. Let k be the shape  
parameter that quantifies the amount of over-dispersion,  
the mean and variance for NB distribution are  

μNB = kp and , respectively. 

 The ZINB distribution is given by Wang and 
Hailemariam [20], which is a special type of mixer 
between Bernoulli distribution and Negative Binomial 
distribution. From the pmf of NB distribution, then the 
pmf of ZINB distribution has the form Equation (4).

 (4)

where 0 < ϕ < 1. Moreover, the mean and variance 
of ZINB the distribution are μZINB = (1 – ϕ) μNB and 

 respectively. Figures 1 and 2  
presented the pmf of ZINB distribution under the  

Figure 1: The pmf of ZINB distribution under ϕ = 0.001,  
k = 0.50,1, and 2.

Figure 2: The pmf of ZINB distribution under k = 0.5, 
ϕ = 0.001, 0.01, and 0.10.
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difference value of k = (0.50, 1, 2) and ϕ = (0.001, 
0.01, 0.10).

2.2  Designed of the double acceptance sampling 
plan for zero-inflated Negative Binomial distribution

The double sampling plan (DSP) requires the specification  
of four quantities which are known as its parameters. 
These parameters are n1, n2, c1 and c2 respectively. In 
a double sampling plan, the decision of acceptance 
or rejection of the lot is taken based on two samples. 
 1) The lot is accepted in the first sample if the 
number of defective units (d1) in the first sample is less 
than the acceptance number c1. 
 2) The lot is accepted in the second sample if the 
number of defective units (d1 + d2) in both samples is 
greater than c1 and less than or equal to the acceptance 
number c2.
 Let  and  denote the probabilities of accepting  
a lot on the first sample and the second sample as 
shown in Equations (5) and (6) respectively, then 
the probability of accepting a lot Pa of proportion of  
defective per lot p is given by Equation (7).

 (5)

 (6)

 (7)

 In this section, the optimal DSP under the 
ZINB distribution (DSPZINB) is described. By applied  
Equation (4) and Equation (7), the probability of  
accepting a lot for ZINB distribution is shown in 
Equation (8).

 (8)

where μNB1 = kp1 and μNB2 = kp2. Let PI be the probability 
of deciding on the acceptance or rejection of the lot on 
the first sample and is given by [Equation (9)]. 

 (9)

 Appling Equation (8) for ZINB distribution, the 
ASN function of the DSPZINB is given by [Equation (10)].

 (10)

2.3  The total cost function of double acceptance 
sampling plan  

In this section, the total cost function in product  
inspection a lot for the DSPZINB is proposed. Three  
different types of costs are considered. The component 
of the total cost function for inspection a lot for the 
DSPZINB can be expressed as follow:

First-component: CI denotes the cost of inspection 
per lot as following in Equation (11).
 

 (11)

where CI represents the inspection cost per unit and 
 represents the 

expected number of units inspected per lot respectively. 
Three terms of the expected number of units inspected 
per lot can be explained as follows:

• : This term denotes the expected  
number of units inspected if the lot is accepted in the 
first inspection of the .

• : This term denotes the expected 
number of units inspected if the lot is accepted in the 
second inspection of the DSP.

•  This term denotes the expected 
number of units inspected if the lot is rejected with 
the probability 1 – Pa(p) of the DSP.

Second-component: CF denotes the cost of the internal 
failure per lot as following in Equation (12).



W. Bamrungsetthapong and P. Charongrattanasakul, “Designing of Double Acceptance Sampling Plan for Zero-inflated and Over-dispersed 
Data Using Multi-objective Optimization.”

342 Applied Science and Engineering Progress, Vol. 14, No. 3, pp. 338–347, 2021

 (12)

where C2 represents the internal failure cost per unit  

and  represents the  

expected number of defective items detected per lot 
respectively. Two terms of the expected number of 
defective items detected per lot can be explained as 
follows:

• (n1 + n2)p: This term denotes the expected 
number of defective items detected if the inspection 
of the is 100%, for the sampled n1 + n2 items.

• (1– Pa(p) (N – (n1 + n2)): This term denotes the 
expected number of defective items detected if the lot 
is rejected with probability 1– Pa(p), it will be 100% 
inspected and the remaining (N – (n1 + n2))p defective 
items will be detected.

Third-component: Co denotes the cost of an outgoing 
defective per lot as following in Equation (13).

 (13)

where C3 represents the cost of an outgoing defective 
per unit and Pa(p) (N – (n1 + n2)) represents the expected  
number of defective items not detected per lot. This 
term can be explained that if the lot is accepted with 
probability Pa(p), the defective items will not be  
detected is (N – (n1 + n2))p.
 Therefore, the total cost of inspection a lot for 
the DSPZINB can be expressed in Equation (14).

 (14)

3 Results and Discussion

In this section, the optimal plan parameters (n1,n2,c1,c2)* 

of the proposed DSPZINB are calculated to achieve the 
minimum and maximum value of multi-objective  
function simultaneously. MATLAB software is used 
in a simulation study in a method of the GA with 
multi-objective optimization. The constraints of 
the producer's risk (α) and the consumer's risk (β) 
are satisfied immediately for the provided of the  
acceptable quality level (AQL) and the lot tolerance 
percent defective (LTPD). For the effectiveness of 
the proposed sampling plan, two points (AQL, 1 – α) 
and (LTPD, β) are considered for changes on the OC 
curve. A manufacturer intends that the occasion of the  
probability of accepting a lot should be greater than 1 – α  
at the quality level of AQL. In real cause, a customer 
requests that the probability of accepting a lot should 
be less than β at LTPD. 
 In the optimization technique, the optimal 
solution is considered on three objective functions  
concurrently, as follows.

Multi-objective function: 

Minimize TC and ASN  (15)

Maximize Pa(p) (16)

Subject to: n1 + n2 ≤ δN, 
 
   and  
 In fact that the required sample sizes (n1,n2) under 
the DSP for inspection in the production process have 
the most effect on cost. Assume that the following sets 
of input parameters are given:
 N = 1,000, α = 0.05, and β = 0.01 respectively. The 
fixed value of AQL is 0.01 and 0.05,  is 0.05,0.075,0.1. 
Also, the fixed value of cost in each status are CI + 1, 
CF = 2, and Co = 10 respectively.

3.1  Numerical example 1

Equations (10) and (14) show the value of TC and ASN 
of the proposed DSPZINB under the required sample  
sizes (n1,n2). Therefore, the sensitivity analysis for the 
optimal value of the required sample sizes (n1,n2) is an 
important situation in the manufacturing process. In this 
numerical example, the required sample sizes (n1,n2) 
are considered by assuming that δ is the proportion  
of the sample sizes from the lot size, .  
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Furthermore, the comparison between the size of 
the first sample (n1) and the second sample (n2) is  
considered. Also, there are three different scenarios 
of the required sample sizes (n1,n2) to find the optimal 
value under multi-objective function of the DSPZINB 
as follows.

Scenario 1 (S1): n1 = n2

Scenario 2 (S2): n1 < n2

Scenario 3 (S3): n1 > n2

 Three scenarios of the required sample size 
are used to measure discrimination of the proposed  
DSPZINB. Depends on the above scenarios, the following  
multi-objective optimization problem is solving 
to investigate the optimal parameters (n1,n2,c1,c2)* 
for the proposed DSPZINB using GA optimization.  
Suppose that the proportion of defective for a lot is  

p = 0.05 under the different combinations of k = 0.50,  
AQL = 0.05, LTPD = 0.10, δ = (0.05,0.10, 0.20,0.25) 
and (0.001,0.01,0.05,0.09,0.10).
 From Table 1, the sensitivity analyses of optimal 
parameters (n1,n2,c1,c2)* under the proposed DSPZINB are 
shown by considering three conditions of the required 
sample sizes. The maximum value of Pa(p) and the 
minimum value of TC and ASN can be determined by 
solving Equations (15) and (16), with a given value 
of p,k,ϕ, AQL and LTPD, using GA multi-objective  
optimization. The optimal plan parameters (n1,n2,c1,c2)* 
under the proposed DSPZINB are determined by satisfying  
2 inequalities, Pa(AQL) ≥ 1 – α and Pa(LTPD) ≤ β. The 
investigating values are given as follows.

1) Based on the considering that the sample sizes 
for the proposed DSPZINB are determined to be less than 
or equal to 5% of lot size (δ = 0.05) under the same 
value of k, ϕ, AQL and LTPD. The result shows that, 

Table 1: The effect of ϕ on the performances of DSPZINB under three conditions of the required sample size

δ ϕ
n1 = n2 n1 < n2 n1 > n2

(25,25,0,1)* (17,33,0,1)* (33,17,0,1)*

Pa TC ASN Pa TC ASN Pa TC ASN

0.05

0.001 0.9759 516 26.82 0.9759 509 19.41 0.9759 524 34.24
0.01 0.9761 516 26.81 0.9761 508 19.38 0.9761 524 34.23
0.05 0.9771 515 26.73 0.9771 508 19.29 0.9771 523 34.18
0.09 0.9781 514 26.66 0.9781 507 19.19 0.9781 522 34.13
0.10 0.9783 514 26.64 0.9783 506 19.17 0.9783 522 34.12

δ ϕ
(50,50,0,1)* (33,67,0,1)* (67,33,0,1)*

Pa TC ASN Pa TC ASN Pa TC ASN

0.10

0.001 0.9759 525 53.65 0.9759 508 37.89 0.9759 541 69.41
0.01 0.9761 525 53.61 0.9761 508 37.84 0.9761 541 69.38
0.05 0.9771 524 53.47 0.9771 507 37.65 0.9771 540 69.29
0.09 0.9781 523 53.32 0.9781 506 37.45 0.9781 539 69.19
0.10 0.9783 523 53.28 0.9783 502 37.40 0.9783 539 69.17

δ ϕ
n1 = n2 n1 < n2 n1 > n2

(100,100,0,1)* (67,133,0,1)* (133,67,0,1)*

Pa TC ASN Pa TC ASN Pa TC ASN

0.20

0.001 0.9759 534 107.29 0.9759 501 76.70 0.9759 566 137.89
0.01 0.9761 533 107.23 0.9761 501 76.61 0.9761 566 137.84
0.05 0.9771 533 106.93 0.9771 500 76.22 0.9771 565 137.65
0.09 0.9781 532 106.64 0.9781 499 75.83 0.9781 564 137.45
0.10 0.9783 532 106.57 0.9783 499 75.74 0.9783 564 137.40

δ ϕ
(125,125,0,1)* (75,175,0,1)* (175,75,0,1)*

Pa TC ASN Pa TC ASN Pa TC ASN

0.25

0.001 0.9759 542 134.12 0.9759 493 87.76 0.9759 591 180.47
0.01 0.9761 542 134.03 0.9761 493 87.65 0.9760 591 180.42
0.05 0.9771 541 133.67 0.9771 492 87.14 0.9771 590 180.20
0.09 0.9781 540 133.30 0.9781 491 86.62 0.9781 589 179.98
0.10 0.9783 540 133.21 0.9783 491 86.50 0.9783 589 179.93
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at ϕ = 0.001, the maximum value of the probability  
of accepting a lot for all scenarios is the same 
value Pa(0.05) = 0.9759. In addition, under the same  
condition, the S2 gives the minimum value of TC and 
ASN with optimal plan parameters (17,33,0,1)*.

2) When ϕ increases, under the same value of ϕ, 
p, AQL and LTPD, the results show that the value of 
Pa(0.05) tends to increase but the value of TC and ASN 
tends to decrease respectively. Furthermore, the S2 still 
provides the most optimal plan parameters.

3) The results indicate that δ = 0.05 is given a 
lower value of TC and ASN than δ = 0.10,0.20 and 0.25 
with the same value of Pa(0.05) for all three scenarios. 
Other than that, the S2 provides the most optimal plan 
parameters to achieve the maximum value of Pa(0.05), 
and the minimum value of TC and ASN.
 It can interpret that the smaller of required sample 
sizes (lower δ) provides the optimal plan parameters of 
the proposed DSPZINB to achieve the maximum value 
of Pa, and the minimum value of TC and ASN. 

3.2  Numerical example 2

In the general sampling system, the manufacturer expects  
that the smaller value of the required sample sizes (n1,n2)  
or ASN would be more satisfactory for designing the  
optimal ASP. For this reason, the numerical example aims  
to find the optimal plan parameters of the proposed 
DSPZINB along with satisfying under the fixed two-level 
values of ϕ, AQL, LTPD, and p as shown in Table 2. 
 In this numerical example, the sensitivity analysis 
of the optimal plan parameter is considered based on 
n1+n2 ≤ 100 and k=0.50.
 From Table 3, the result shows that the level of 
value (ϕ, p, AQL, LTPD) = (L, L, H, H) provides the 
optimal plan parameter (43,57,0,9)* that gives the  

minimum value of TC as 140 and ASN as 43.01. 
Other than that, the level of value (ϕ, p, AQL, LTPD) 
= (H,L, H, L) provides the optimal plan parameter 
(44,56,0,11)* that gives the minimum value of TC as 
140 and ASN as 44.01 respectively.
 For the result in Table 3, it can interpret that 
the S2 (n1<n2) proposed the optimal plan parameter 
which achieves the optimal solution of Pa(p), TC and 
ASN while the value of c2 is a very different from c1. 
Moreover, It is seen that the proposed DSPZINB gives 
the optimal plan parameter when LTPD = 0.10.

Table 2: the two-level values of ϕ, AQL, LTPD and p 
under the proposed DSPZINB

Fixed Parameter Low Values (L) High Values (H)
ϕ 0.001 0.10
p 0.01 0.05

AQL 0.01 0.05
LTPD 0.05 0.10

3.3  Numerical example 3 

In the real case, it was found that most of the inspection  
processes determine that the first sample and the  
second sample are equal (n1 = n2). So, in this example,  
the performance of the proposed DSPZINB with a  
different value of k under the optimal plan parameter  
(50,50,0,1)* is considered to achieve the optimal  
solution of Pa(p), TC, and ASN as presented in Table 4.  
Figures 3–5 illustrate the OC curves, the TC curves, 
and the ASN curves under the proposed DSPZINB when 
considering the different values of k (k = 0.50,0,1,2). 
Figures 6–8 show that the OC curves, the TC curves, 
and the ASN curves under the proposed DSPZINB with 
a different value of ϕ (ϕ=0.01,0.05,010) under the 
optimal plan parameter (50,50,0,1)*.

Table 3: The optimal parameters (n1,n2,c1,c2)* for DSPZINB based on n1+n2 ≤ 100 and k = 0.50

ϕ p LTPD AQL
Optimal Parameters Optimal Solution

n1 n2 c1 c2 Pa TC ASN
L L    L L 49 51 0 1 0.9950 146 49.79
L L H H 43 57 0 9 0.9953 140 43.01
L H L H 49 51 0 1 0.9759 524 52.72
L H H L 43 57 0 11 0.9816 513 43.01
H L L H 48 52 0 1 0.9955 145 49.71
H L H L 44 56 0 11 0.9957 140 44.01
H H L L 49 51 0 1 0.9783 522 52.35
H H H H 28 72 0 14 0.9830 497 28.02
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Figure 3: The optimal OC function under the optimal 
plan parameter (50, 50, 0, 1)* and k = 0.50, 1.2.

Figure 4: The optimal ASN curves under the optimal 
plan parameter (50, 50, 0, 1)* and k = 0.50, 1.2.

Figure 5: The optimal TC curves under the optimal 
plan parameter (50, 50, 0, 1)* and k = 0.50,1.2.

Figure 6: The optimal OC function under the optimal 
plan (50, 50, 0, 1)* and ϕ = 0.01, 0.05, 0.10.

Figure 7: The optimal ASN curves under the optimal 
plan (50, 50, 0, 1)* and ϕ = 0.01, 0.05, 0.10.

Figure 8: The optimal TC curves under the optimal 
plan (50, 50, 0, 1)* and ϕ = 0.01, 0.05, 0.10.
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4 Conclusions

Nowadays, It was found that when the production 
process is well inspected, the zero defects are more 
detect in sample inspections. There are many ways 
to achieve the optimal DSP that is affected by zero-
inflated and overdispersed data. In this research, the 
proposed method is modified to make an optimal 
decision for the manufacturer. The optimal plan  
parameters are proposed to the DSPZINB, which are  
calculated to achieve the minimum and maximum 
value of multi-objective function simultaneously. 
 In conclusion, the result indicates that the smaller 
of required sample sizes (lower δ) provides the optimal 
plan parameters of the proposed DSPZINB to achieve the 
maximum value of Pa, and the minimum value of TC 
and ASN. Based on the same value of k, δ, AQL and 
LTPD, Pa increase but TC and ASN decrease when ϕ 
increases. Furthermore, under three different scenarios 
of the required sample sizes, the S2 (n1 < n2) provides 
the most optimal plan parameters to achieve the  
optimal multi-objective. Although the S2 gives the 
best answer for the proposed DSPZINB, it is found that 
the value of the acceptance number c1 is very different  
from c2, which is not appropriate in practice. Moreover, 
It is seen that the proposed DSPZINB gives the optimal 
plan parameter when LTPD = 0.10. This means that 
the proportion of defective that will be accepted by 
the sampling plan at most 10% per lot. In the real 
case, most of the inspection processes determine 
that the first sample and the second sample are equal  
(n1 = n2). So, the performance of the proposed DSPZINB 
with a different value of k and ϕ are considered based 
on (50,50,0,1)*. It can interpret that the proposed 
DSPZINB give a good performance when k is small and 

approaches zeros while ϕ is a large value.  
 To apply the proposed methods, the manufacturer 
should know some necessary value of input parameters 
such as lot size, the proportion of defect per lot, cost 
per unit, etc. In future work, the proposed method 
will be applied to construct the optimal plans of other 
sampling plans such as multiple acceptance sampling 
plans, repeat sampling plans, etc. Moreover, the  
proposed method can be extended under the other 
optimal distribution.

Abbreviations
ASP acceptance sampling plan 
DSP double acceptance sampling plan
SSP single sampling plan
NB Negative Binomial
ZI Zero-inflated
ZIP Zero-inflated Poisson
ZINB Zero-inflated Negative Binomial
DSPZINB double acceptance sampling plan under the  

distribution
ASN average number of samples
TC total cost of inspection a lot
GA Genetic Algorithm
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