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Abstract: Multi-walled carbon nanotubes (MWCNTs) were grown on a stainless-steel foil by thermal
chemical vapor deposition (CVD) process. The MWCNTs were functionalized with carboxylic
groups (COOH) on their surfaces by using oxidation and acid (3:1 H2SO4/HNO3) treatments for
improving the solubility property of them in the solvent. The functionalized MWCNTs (f -MWCNTs)
were conducted to prepare the solution by continuous stir in poly(3,4-ethylenedioxythiophene):
poly(styrenesulfonate) (PEDOT:PSS), dimethyl sulfoxide (DMSO), ethylene glycol (EG) and Triton
X-100. The solution was deposited onto a bendable substrate such as polyethylene terephthalate
(PET) with a fabricated silver interdigitated electrode for application in a room-temperature gas
sensor. A homemade-doctor blade coater, an UNO R3 Arduino board and a L298N motor driver
are presented as a suitable system for screen printing the solution onto the gas-sensing substrates.
The different contents of f -MWCNTs embedded in PEDOT:PSS were compared in the gas response
to ammonia (NH3), ethanol (C2H5OH), benzene (C6H6), and acetone (C3H6O) vapors. The results
demonstrate that the 3.0% v/v of f -MWCNT solution dissolved in 87.8% v/v of PEDOT:PSS, 5.4% v/v
of DMSO, 3.6% v/v of EG and 0.2% v/v of Triton X-100 shows the highest response to 80 ppm NH3.
Finally, the reduction in the NH3 response under heavy substrate-bending is also discussed.

Keywords: screen-printing; multi-walled carbon nanotubes; PEDOT:PSS; gas sensor

1. Introduction

Nowadays, electronic equipment bending presents a major shift from rigid devices to
flexible and stretchable systems. Because of their low-cost, thin and flexible characteristics,
printed electronics provide a novel technology for the replacement of traditional inflexible
devices. It has many advantages such as lightweight and easy preparation compared
with the conventional vacuum deposition and photolithographic patterning methods. For
the gas sensor applications, the printed techniques (direct-writing, inkjet-printing, screen-
printing, 3D printing) provide a range of time-saving mechanisms and the full potential
of sensing signals for application in the scope of gas sensors [1–4]. Toxic gases are major
problems in human health and the environment. The causes of these problems are gases
released from various industries during production processes. Ammonia (NH3) is known
to provide an effect on the human health as an explosive gas. As colorless gas with a
distinct pungent smell, it can even lead to suffocation and death if the level of exposure
is high. Therefore, monitoring and timely warning is important for settings in industrial
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factories and other public places. The development of detection technology is ongoing,
with the development of simple approaches including electrochemical and semiconduc-
tor devices. However, the life-time of electrochemical sensors is limited by the various
electrolytes. The semiconductor sensor involves thin metal oxide films with working tem-
peratures over 150 ◦C [5–8]. This is a limitation of operation with flexible plastic substrates.
Multi-walled carbon nanotubes (MWCNTs), functionalized multi-walled carbon nanotubes
(f -MWCNTs) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)
have long been considered a good selection for room-temperature sensing materials of
different gases [9–16]. Moreover, the deposition of f -MWCNT-PEDOT:PSS as a sensing
layer using the inkjet-printed technique has been reported for the enhancement of gas-
sensing properties [17]. However, the problem of clogged nozzles in the printer-head is still
a main obstruction for the preparation of sensing layers onto the substrates. Screen-printing
techniques have been used to solve the abovementioned problems [3]. It is an effective and
simple process used to deposit sensing materials onto the substrates for application in the
field of gas sensors. It also has many advantages in controlling the thickness and chemical
composition of sensing-materials.

In this study, the f -MWCNT-PEDOT:PSS-based solution was prepared as a sensing
layer for application in gas sensor. The combination of a homemade-doctor blade coater,
an UNO R3 Arduino board and an L298N motor driver was presented as a novel system
for screen-printing the solutions onto the gas-sensing substrates. The different contents of
f -MWCNTs embedded in PEDOT:PSS were compared in the gas response to various gases
at room-temperature. The performance of the fabricated gas sensor was further evaluated
in sensitivity, selectivity, response time, recovery time and drift parameters. Finally, the
reduction in the NH3 response for the sensor under heavy substrate-bending was also
discussed based on a tensile strain effect.

2. Materials and Methods

The MWCNTs were grown on a 1.6 × 3.0 cm2 stainless steel (304 SS) foil with a
thickness of 50 µm by using a thermal chemical vapor deposition (CVD) process. The
MWCNTs were synthesized under atmospheric pressure of acetylene (C2H2), hydrogen
(H2) and argon (Ar) gases with a flow rate of 160, 200, and 50 sccm, respectively. The
304 SS foils were heated at a fixed temperature of 700 ◦C, while all gases were fed into
a horizontal chamber. The details of MWCNT growth have been reported in a previous
work of our group [18]. After the CVD process, the MWCNT powder on 304 SS foil was
scraped from the 304 SS substrate using a plastic rod. The powder was heated up to a
temperature of 1000 ◦C under atmospheric pressure of nitrogen (N2) gas for 30 min to
remove amorphous regions on the MWCNT surfaces. The powder was then ultrasonically
immersed in an 80 mL mixture of sulfuric acid and nitric acid (3:1 H2SO4/HNO3) for 2 h.
This functionalization was presented for improving the solubility property of f -MWCNTs in
solvent [17,19]. After the oxidation and acid treatments, the distilled water was employed
to rinse contaminations and some remaining acids on the MWCNT surfaces. Before the
preparation of the f -MWCNT sensing solution, the powder was dried in an oven at 80 ◦C
for 12 h. The dried f -MWCNTs were continuously sonicated in 80 mL of deionized water
(DI water) for 45 min. The 0.0, 0.5, 2.0, 3.0 and 5.0% v/v of f -MWCNT solutions were stirred
in different concentrations of PEDOT:PSS, dimethyl sulfoxide (DMSO), ethylene glycol
(EG) and Triton X-100 for 2 h. The concentration details in terms of the volume percentage
of all chemicals for preparing the sensing-solutions are defined by the S0, S1, S2, S3 and S4
samples, as shown in Table 1.

It should be noted that the f -MWCNTs and PEDOT:PSS were used as the sensing
materials. DMSO, EG and Triton X-100 were used as a solvent, a viscosity modifier and a
nonionic surfactant, respectively. The f -MWCNTs embedded in PEDOT:PSS, DMSO, EG
and Triton X-100 in each condition were screen-printed on polyethylene terephthalate (PET)
substrates by using a homemade-doctor blade coater controlled with a UNO R3 Arduino
board and an L298N motor driver as shown in Figure 1. A stepper motor in a doctor-blade
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coater was supplied by a 12 V DC power supply in order to rotate the motor to drive the
blade movement along the screen-printing path with a speed of 0.5 cm/s. During the
screen printing, a 0.3 N perpendicular force was applied on the substrate modulated by
a blade and two micrometers. A UNO R3 Arduino board supplied by a 5 V DC power
supply was conducted to compile and control all functions in the system through the input
and to enable the channels. To prepare the S0, S1, S2, S3 and S4 gas sensors, the S0, S1, S2,
S3 and S4 samples were screen-printed onto PET substrates with fabricated 1.0 × 1.6 cm2

silver interdigitated electrodes. The sensors were evaluated on the basis of their sensing
performances under gas ambient using a flow-through system as shown in Figure 2. The
composition of the system consists of an air pump, an exhaust fan and a rotary pump, two
flow meters, a circuit board and two ball valves. The sensor was placed into a four-way
cross fitting as a test chamber while a voltage divider circuit was also connected to the
test chamber. A rotary pump was used to evacuate and remove the remaining gas out of
the chamber before supplying the air and test gas into the chamber for the gas-sensing
measurement. A laptop operated with LabVIEW software and an NI USB DAQ 6008 device
was used to monitor the gas-sensing signals by measuring the resistance of a gas sensor
every second. After the gas-sensing measurement, an exhaust fan was used to drain all
gases to the outdoors.

Table 1. Concentration of each chemicals for preparing the solutions.

Sample
f -MWCNT

Solution
(% v/v)

PEDOT:PSS
(% v/v)

DMSO
(% v/v)

EG
(% v/v)

Triton
X-100

(% v/v)

S0 0.0 90.8
S1 0.5 90.3
S2 2.0 88.8 5.4 3.6 0.2
S3 3.0 87.8
S4 5.0 85.8
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Figure 2. Photograph of gas-measurement system in this study.

3. Results and Discussion

After the CVD process, the MWCNTs were grown on a full area of 304 SS foil. Figure 3
shows a photograph of a 1.6 × 3.0 cm2 304 SS foil before (Figure 3a) and after (Figure 3b)
CVD process. Surface morphologies of MWCNTs grown on 304 SS foil were characterized
by scanning electron microscope (SEM, Quanta 450 FEI) with a working voltage and current
of 30 kV and 10 µA. To observe the density of MWCNTs more easily, a Scotch® tape was
conducted to remove the MWCNTs from some area of the foil as shown in Figure 4a.
The MWCNTs on the 304 SS foils were ultrasonically sonicated in the DMSO solvent and
dropped onto a copper grid. It was then inserted into a sample holder of a high-resolution
transmission electron microscope (HRTEM, Hitachi HT 7700). The HRTEM was conducted
using an accelerating voltage of 200 kV with a current of 60 µA to examine the size of
MWCNT diameter. It can be confirmed that the samples are multiwalled carbon nanotubes
with a diameter size of ~35 nm, as shown in Figure 4b. The diameter measurements were
calculated using an ImageJ software program in five different areas of the sample. It is
seen that the average size of the diameter for the MWCNTs was found to be 35 ± 5 nm.
The MWCNTs were functionalized with carboxylic groups (COOH) on their surfaces using
oxidation and acid (3:1 H2SO4/HNO3) treatments. Furthermore, 0.5 g of functionalized
MWCNTs (f -MWCNTs) was continuously sonicated in 80 mL DI water for 45 min. The
f -MWCNT solutions in each condition were then conducted to prepare the conductive
solution by continuous dissolution in PEDOT:PSS, DMSO, EG and Triton X-100. The surface
morphologies of f -MWCNT-PEDOT:PSS at different sensors of S1, S2, S3 and S4 can be
seen in Figure 5. As the content of f -MWCNTs in the solution increases, the density of
PEDOT:PSS tends to decrease. The formation of functional groups on f -MWCNT-PE the
DOT:PSS surfaces was characterized using a Fourier transform infrared spectrometer (FTIR,
Perkin Elmer Spectrum One) as shown in Figure 6. The weak peak at 1625 cm−1 might
be assigned to the C=C stretching mode of the graphitic layer for MWCNT. This peak is
weak because of the symmetry of the dipole moment on the graphitic layer [13,20]. In the
case of the spectrum for f -MWCNT-PEDOT:PSS, the peaks contain C-S bond at 705, 858
and 946 cm−1 [20]. The peaks at 658, 1095, 1412 and 1713 cm−1 indicate the stretching
mode of S=O, C-O, C-C and C=O in carboxyl stretching modes, respectively. The dual
peaks at about 2900 cm−1 for the C-H stretching mode might represent contaminations of
hydrocarbon in the spectrometer. The broad peak at around 2900 cm−1 is responsible for
the O-H groups [21]. This indicates the presence of the formation of carboxylic (COOH)
groups on the surface of f -MWCNTs embedded in PEDOT:PSS. The f -MWCNTPEDOT:PSS
solution was deposited onto a PET substrate with a fabricated silver interdigitated electrode
with a designed screen-printing system.
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Figure 7a shows a photograph of a home-made doctor blade coater and its parts.
The screen-printed film of f -MWCNT-PEDOT:PSS gas sensor before and after peeling the
sticker mask can be seen in Figure 7b,c, respectively. The size of f -MWCNT-PEDOT:PSS
sensing film is 0.6 × 0.8 cm2, as shown in Figure 7c. After the screen-printing process, the
sensor was placed into the test chamber of the gas-measurement system. The sensor was
investigated for its response to NH3 and other target gases at room-temperature. Figure 8
shows the resistance changes of S1, S2, S3 and S4 gas sensors under 80 ppm NH3 exposure.
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More specifically, the gas sensor without f -MWCNT content (S0 gas sensor) was further
characterized as a comparison. It is seen that the baseline resistances of all fabricated gas
sensors are found to be ~830 Ω. Then, all of the dynamic resistances of sensors increase
when the sensors are exposed to 80 ppm NH3 vapors. However, the resistances of S0, S1,
S2 and S3 sensors recover completely to their baseline after the valve of NH3 vapors is
closed, as can be seen in Figure 8a. For the high f -MWCNT content of the S4 gas sensor,
it was interestingly observed in Figure 8b that the resistance cannot return to its baseline
line, although the NH3 flow stopped. The gas sensors were evaluated in terms of their
performances using gas response, selectivity, response time, recovery time and drift value.
The gas response was defined by Equation (1).

S(%) =
Rgas − Rair

Rair
× 100, (1)

where Rgas and Rair are the gas-sensor resistances in test-gas and dry-air flows, respectively.
The calculated values of gas response for the S0, S1, S2, S3 and S4 sensors under

80 ppm NH3 exposure were 14.5, 32.5, 44.6, 66.3 and 67.5%, respectively. It was found that
the gas response of all sensors increased with an increasing f -MWCNT contents. However,
the gas sensor with a high content of f -MWCNTs (S4 sample) demonstrated no noticeable
return to the baseline resistance. The drift value of resistance for the S4 sensor was ~350 Ω.
It is known that this value is not impressive for sensor preparation. Therefore, the optimum
f -MWCNT content for the fabrication of an effective f -MWCNT-PEDOT:PSS gas sensor
exposed to 80 ppm NH3 is 3% v/v of f -MWCNT solution (S3 sample). The time of the
change for the sensor resistance after a gas-sensing cycle is defined as the response time.
For all of the sensors, the response time was found to be of a similar value, at ~3.8 min.

The recovery time of the sensor has been further defined by the time of resistance
change and recovery to its baseline. It is seen in Figure 8a that the recovery time of S0,
S1, S2 and S3 sensors was a duplicate value of ~4.5 min. For the S4 sample, it cannot
be indicated in the recovery time due to the fact that the resistance of the S4 sensor does
not perfectly return to its baseline. Normally in physisorption, the gas molecules accu-
mulate on the sensing surface due to weak force, known as Van der Waals forces. The
chemisorption involves the strong chemical bonding of the adsorbate with the surface of the
adsorbent. Therefore, the chemical adsorption requires activation energy for reversibility
in nature. For the gas-sensing layer with a low f -MWCNT content (3.0% v/v solution),
the physisorption is stronger than the chemisorption processes in case of NH3 sensing by
f -MWCNT-PEDOT:PSS, while the high f -MWCNT content (≥5.0% v/v solution) of the
sensing layer presents very strong chemisorption. Therefore, the content of f -MWCNTs
embedded in PEDOT:PSS has an important effect on the adsorption of NH3 molecules.
The effectiveness of the S3 gas sensor in handling repeated inlets of NH3 gas is shown
in Figure 9. It can be seen that the S3 gas sensor presents a good reproducibility of the
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sensor for 80 ppm NH3 exposure with excellent recovery over four cycles. The earlier
publication involving the gas sensor has been focused on the reduction in the recovery
time and enhancement of the recovery process. The reduction in the recovery time from
48 h to 20 min has been reported by using the combination of heat and a DC electric field
to serve the desorption of NH3 molecules from MWCNT surfaces [22]. In this work, the
f -MWCNT-PEDOT:PSS gas-sensor with the optimum condition (S3 gas sensor) presents
good performance in terms of the recovery property in dry-air flows without external
excitation. The recovery time of the S3 gas sensor after 80 ppm NH3 exposure is less than
the time reported for the above work.
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For the selectivity property, all of the sensors were compared in gas response under
80 ppm NH3, 200 ppm C2H5OH, 200 ppm C6H6 and 1000 ppm C3H6O. It can be observed
in Figure 10a that the sensors show the highest response to 80 ppm NH3, while the gas
responses of all sensors exposed to other gases are lower than 10%. Therefore, the PE-
DOT:PSS and f -MWCNT-PEDOT:PSS gas sensors have a good performance in selectivity to
NH3. The S3 gas sensor, as the best sample, was warranted a more thorough investigation
in relation to its sensitivity property. This property has been evaluated by a slope value of a
linear relation between gas concentration and the gas response of sensors under target gas.
The calculated values of slopes for S0 and S3 sensors were compared. It is seen in Figure 10b
that the sensitivity values of the S0 and S3 sensors are 0.20 and 0.97 ppm−1, respectively.
Therefore, it can be indicated that the f -MWCNT contents embedded in PEDOT:PSS leads
to a better sensitivity of the gas sensor.

To study the effect of the bending state on the gas response of sensors, the S3 gas sensor
was bent to a curvature radius of 3.0 and 0.9 cm, respectively. Furthermore, the sensor with
a flat state was also tested as a comparison. Polylactic acid (PLA) filaments were printed in
the cylindrical shape with an outer radius of 3.0 and 0.9 cm by a 3-dimensional (3D) printer.
As shown in the diagram in Figure 11a, a PLA cylindrical shape was used as a holder for
laying a fabricated sensor on its side surface. The sensor was carefully attached to a PLA
holder using a Scotch® tape before it was inserted into a test chamber of the gas-sensing
measurement system. It should be noted that only one sensor can be tested at a time. After
testing the bending sensors, as shown in Figure 11b, the gas responses of the S3 sensor
under flat and 3.0 cm bending-radius states did not present an obvious difference. The
calculated values of the gas response for two of the sensors are found to be 67.5 and 65.0%,
respectively. For the 0.9 cm bending-radius state of the sensor, it was observed that the
calculated value of gas response significantly reduced to 29.5%. The reduction in the NH3
response for the sensor under heavy substrate-bending is further discussed based on a
tensile strain effect.
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Figure 11. (a) Schematic diagram of f -MWCNT-PEDOT:PSS gas sensor under bending test. (b) Resistance
changes of S3 gas sensor measured during flat and bending (r = 0.9 cm, r = 3.0 cm) states.

To understand the tensile strain effects on the gas response of the f -MWCNT-PEDOT:PSS
gas sensor, the surface morphology of the S3 screen-printed film after already bending test
was further investigated. Figure 12 shows the SEM images of f -MWCNTs embedded in
PEDOT:PSS sensing films (S3 sample) after bending tests with 3.0 cm and 0.9 cm radii. It
was observed in Figure 12a that there were some cracks in the bending-film surface. The
sizes of the crack gaps for the films after 3.0 and 0.9 cm bending-radius tests were found to
be ~1.1 and ~1.5 µm, respectively. After a test of 3.0 cm bending-radius (Figure 12b), there
were f -MWCNT alignments in the film, which acted as conductive pathways between the
gap. For the much larger crack gap of a 0.9 cm bending-radius film (Figure 12c), a lack of
f -MWCNT pathways was observed. Delamination, channeling and cracking have been
reported as important causes for the failure of breakable films on flexible substrates [23–25].
When decreasing the stress on the film surface, the tensile strain increased. Therefore, the
crack paths on the film surface were generated. This is the most common observation for
the polymer film during the bending process. Figure 13 shows the schematic diagram
of pathways in electron transports for a f -MWCNT-PEDOT:PSS gas sensor under a flat
state (Figure 13a), 3.0 cm (Figure 13b) and 0.9 cm (Figure 13c) bending-radius states.
The reduction in the NH3 response for the sensor under heavy bending has been also
discussed, in that the cracks generate permanent changes in the electrical resistance of
PEDOT:PSS sensing films. However, the f -MWCNTs embedded in the PEDOT:PSS act as
additional pathways in electron transport. Therefore, the changes in electrical resistance
of the f -MWCNT-PEDOT:PSS sensing film with weak bending have little impact on the
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electrical property and gas-sensing performance. This may provide a reason as to why the
gas response of the f -MWCNT-PEDOT:PSS gas sensor under flat and 3.0 cm curvature-
radius states did not lead to an obvious difference. However, due to the large crack gap
in the heavy bending substrate, the sensor under 0.9 cm bending radius presents a low
response to 80 ppm NH3. This is due to the lack of f -MWCNT connectors between the gap.
This results in the creation of low conductive pathways in electron transports. Therefore,
low signals of gas response for the f -MWCNT-PEDOT:PSS gas sensor to NH3 under heavy
substrate-bending are represented.
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Figure 12. SEM images of (a) screen-printed f -MWCNT-PEDOT:PSS films (S3 sample) after bending
tests with (b) 3.0 cm and (c) 0.9 cm radii.
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Figure 13. Schematic diagram of pathways in electron transports for f -MWCNT-PEDOT:PSS gas
sensor (S3 sample) under (a) flat state, (b) 3.0 cm and (c) 0.9 cm bending-radius state.

The gas-sensing mechanism of the screen-printed f -MWCNT-PEDOT:PSS gas sensor
has been proposed based on a classification of two possible mechanisms. The f -MWCNT-
PEDOT:PSS gas sensor with a high f -MWCNT content has been proposed as a first possible
mechanism based on a reducing reaction between chemisorbed oxygen groups on the
f -MWCNT-PEDOT:PSS surfaces and gas molecules. The oxygen groups can be trapped
on the surface of active materials in dry air at room temperature. In addition, the oxygen
groups also tend to increase after functionalization with 3:1 H2SO4/HNO3 treatment. After
the exposure of the gas-sensing film to NH3 vapor, the NH3 molecules can be adsorbed
on the f -MWCNT-PEDOT:PSS surfaces. The reducing reaction between NH3 molecules
and oxygen groups returns electrons to the f -MWCNT-PEDOT:PSS surfaces as a p-type
semiconductor material. When the p-type semiconducting f -MWCNT-PEDOT:PSS gas
sensor received electrons from NH3 molecules, the concentration of the hole in p-type
semiconducting f -MWCNT-PEDOT:PSS gas sensor decreased. This leads to an increment
in the electrical resistance of the f -MWCNT-PEDOT:PSS gas sensor after exposure to NH3
gas. Because of the strong bonding between the NH3 molecules and oxygen-containing
groups, the NH3 chemisorbed molecules cannot be removed completely from the surface
of f -MWCNT-PEDOT:PSS at room temperature, although the NH3 gas sensor is purged
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by the dry-air. This may lead to a creation of drift at a baseline of resistance for the
f -MWCNT-PEDOT:PSS gas sensor with a high f -MWCNT content (S4 gas sensor).

With regard to the second possible mechanism, the f -MWCNT-PEDOT:PSS gas sensor
with a low f -MWCNT content has been also discussed based on a direct charge-transfer
process between NH3 molecules and f -MWCNT-PEDOT:PSS surfaces. Physisorption has
been considered as a dominant process in the explanation of this possible mechanism. The
increments in the specific adsorption area and π-π interactions can be improved by the
addition of f -MWCNTs to PEDOT:PSS. The holes of f -MWCNT-PEDOT:PSS respond to do-
nating electrons from NH3 molecules when they are adsorbed onto f -MWCNT-PEDOT:PSS
surfaces. When decreasing the hole concentration, the resistance of the p-type semicon-
ducting f -MWCNT-PEDOT:PSS gas sensor increases. Because physisorption is a weak π-π
interaction, the gas molecules can be easily purged under dry air at room temperature.
This may lead to the complete recovery of the baseline for the S0, S1, S2 and S3 gas sensors
under the purging of dry-air at room temperature.

4. Conclusions

The f -MWCNTs were successfully prepared in the gas-sensing solutions by continuous
stirring in PEDOT:PSS, DMSO, EG and Triton X-100. The solutions were screen-printed onto
PET substrates using the low-cost system for preparation of room-temperature gas sensors
and characterized for NH3 sensing. The optimum f -MWCNT content for the fabrication
of an effective NH3 gas sensor is a 3.0% v/v solution. It presents good performance of the
recovery property in dry-air flows without external excitation. The sensors were also tested
under substrate-bending in different states. It can be concluded that the gas responses of
the sensor under flat and weak bending did not have an obvious difference because the
f -MWCNTs act as additional pathways in electron transport between the crack gap on the
sensing films. For heavy substrate bending, the gas response of the sensor is significantly
reduced due to the tensile strain effect. The gas-sensing mechanism of the screen-printed
f -MWCNT-PEDOT:PSS gas sensor has been proposed based on a classification of two
possible mechanisms such as the reducing reaction and direct charge-transfer process. This
finding will be useful for the development of future electronic technology in flexibility.
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