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Abstract: Shallow water sponges settled on a raft along the Pong River (Lower Mekong Basin,
Thailand) were investigated to highlight the taxonomic richness, composition, relative abundance
and lifestyle of sponge-dwelling aquatic Insecta. The three-dimensional biogenic structures of the
model sponges hosted 4 orders of Insecta, belonging to 10 families and 19 genera/species, able to
strictly coexist at the level of the sponges in aquiferous canals and/or at the body surface, and/or
dwelling in the extracellular matrix. On the basis of the identified 379 larvae and pupae, Trichoptera
and Diptera were found to be the dominant inhabitants of Corvospongilla siamensis (Demospongiae:
Spongillida), endemic to Southeast Asia. In the focused lotic ecosystem, dominated by soft bottoms,
sponges play a functional role. Insecta use sponges as a substratum, nursery ground, food source, and
shelter microhabitat, protecting them from predation and environmental aggression. Moreover, their
feeding behavior indicates the insects’ adaptive traits to recycle sponge siliceous spicules as a source
of exogenous material to strengthen the larval–pupal cases and the digestive system. The results of
the Thai sponge model contribute to the inventory of global engineering species richness, ecosystem
types, and biogeographic diversity, thus raising awareness for freshwater biodiversity conservation.
In this regard, the present data, along with the worldwide inventory, focus on sponges as (a) key
habitat-forming species for aquatic insect assemblages, (b) ecosystem engineers in river/lake/wetland
ecosystems, providing water purification, the processing of organic matter, recycling of nutrients,
and freshwater–terrestrial coupling, and (c) promising candidates in restoration projects of tropical
freshwater ecosystems by bioremediation.

Keywords: entomofauna diversity; tropical Insecta-Porifera association; global inventory; larval
microhabitat and behavior; restoration and bioremediation

1. Introduction

Spongillida (Demospongiae) inhabit and settle on a wide array of natural and artificial
substrata in lotic and lentic water and wetlands in all continents, except Antarctica [1–3]. In
the food web of freshwater ecosystems, sponges play a functional role as filter feeders,
consuming the pelagic resources linking the pelagic and benthic trophic webs [4]. A
sponge can filter up to 35 mL min−1(cm sponge)−3 [5]. This water volume is related to
the sponge volume, oscule diameter, and water pumping rates, and could be affected
by the temperature, food concentration, suspended sediment concentration, water flow,
and viscosity [6–8]. This behavior was highlighted also in stressed conditions of sponge
microcosms living in water rich with organic and bacterial loads in polluted sites during in
situ experimental sponge aquaculture [9].

During their long-lasting lifecycle, continental sponges’ growth forms range from
encrusting to massive and arborescent in the sessile adult phase, with a body size from a
few millimeters to more than 1 m in diameter [1,2,10].
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It is well known that the Spongillida (families Lubomirskiidae, Metaniidae, Potamolep-
idae, and Spongillidae) are associated with a diversified entomofauna worldwide, i.e.,
Ephemeroptera, Plecoptera, Odonata, Hemiptera, Megaloptera, Neuroptera, Trichoptera,
Lepidoptera, Coleoptera, and Diptera, plus several other phyla ranging from bacteria
to fishes and amphibians [1,2,11–13]. However, little is known about the diversity of
sponge-dwelling aquatic insects and their relationship in Southeast Asia [14].

Investigations were carried out in the Lower Mekong Basin (Thailand, Oriental–
Himalayan Region) to study (a) the composition, relative abundance, and taxonomic
richness of sponge-dwelling aquatic insects, (b) their behavioral and ecological relation-
ship, and (c) their biogeographic diversity. The data of insect–sponge associations are
discussed also in comparison with the global dataset to highlight the sponges’ ecosystem
services and to raise awareness of the biodiversity conservation of these peculiar living
freshwater habitats.

2. Materials and Methods
2.1. Study Area

This study was carried out in the Pong River (16◦46′19.9′ ′ N, 102◦38′3.25′ ′ E) which
is a tributary of the Lower Mekong Basin (Figure 1) by the largest hydrographic basin
of Northeastern Thailand. This regulated river provides an important water resource for
agriculture, domestic uses, aquaculture, recreation, electricity generation, and industrial
purposes, especially in Khon Kaen Province. Water is released from the outlet of the
Ubolratana Dam to the lower part of the Pong River for water management, such as
supplying water for agriculture and preventing water degradation by the operation of
the Electricity Generating Authority Thailand, both in the wet (June–November) and dry
(December–May) seasons. This eutrophic river, dominated by silty bottoms and having
the most altered water quality of this region, since 1993, has been polluted from multiple
sources, e.g., agricultural run-off, a pulp and paper mill, and a fertilizer factory [15,16].
Nevertheless, the water quality was in a generally fair condition, according to the surface
water quality standard and water quality index [17].
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The study site, Ban Huai Sai, is located at 165 m asl (16◦46′19.9′ ′ N, 102◦38′3.25′ ′ E)
~1.5 km downstream from the outlet of the Ubolratana Dam (Figure 2). The riverbed is
characterized by a maximum depth of 8 m and width of 70 m. The submerged substrata
range from silty bottoms, timbers, and aquatic plants to artificial manufacture along the
banks, e.g., fish cage nets, submerged structures of rafts, and nylon lines. The riparian
vegetation mainly consists of the rain tree, Samanea saman (Jacq.) Merr. The aquatic
vegetation mainly consists of Colocasia sp., Hydrilla verticillata (L. f.) Royle, Cyperus sp., and
Nephrolepis sp. Sponges of the order Spongillida (Demospongiae) were found on the twigs
and the bottom of the riverbed [19]. Flourishing and abundant sponge populations were
also settled on the submerged artificial substrata, floating raft construction, buoys, and
recreational fishing nylon lines trapped in the raft buoys at the study site (Figure 2a).
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Figure 2. View of the study site. (a) Corvospongilla siamensis on artificial substrata. (b) Schematic
diagram of a raft, submerged structures, and nylon lines colonized by sponges (orange) at 0.3–1 m
water depth in the study site.

2.2. Sampling Methods

Fourteen specimens of sponges were collected in February 2008 (dry season, northeast
monsoon) at two water depths, i.e., 0.3 m from the submerged raft construction (seven
sponges), and 1 m on the nylon lines (seven sponges) (Figure 2b). These specimens were
ascribed to Corvospongilla siamensis, Manconi & Ruengsawang, 2012. The identification
of the sponges was based on the growth form, skeletal architecture, and microtraits. De-
tailed analyses of the gemmular theca and its gemmuloscleres, together with the skeletal
microscleres and megascleres, were carried out [20–22]. All the sponges considered in
the study were covered with a hand net of 450 µm mesh size, carefully detached from
the substrate, and then placed into plastic bags. To allow most of the aquatic insects to
leave their hosts, each sample with its river water was placed in a plastic tray for half
an hour (ambient temperature), and then it was preserved in 70% ethanol. Each sponge
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was photographed in the field. In the laboratory, the samples were washed through a
500 µm mesh-size sieve, and the associated insects remaining on the surface of the sponges
and sieve were collected by forceps. Each sponge was also carefully dissected to collect
the insects that remained within its body. All the aquatic insects were sorted, identified
to the lowest possible taxonomic level, and counted by screening at the microscope. The
taxonomic identification of the insects from Ban Huai Sai was based on Morse et al. [23],
Epler [24], Sangpradub and Boonsoong [25], and Cranston [26]. The similarities in the
aquatic insect composition between the screened sponge specimens were analyzed by
cluster analysis, using Jaccard’s similarity index, by PC-ORD software version 5.10.

The gut contents of the dominant insect taxa were investigated qualitatively by light
microscopy for their primary dietary components. Thirty specimens of each taxon were
dissected under a stereomicroscope; their digestive tracts were mounted on slides and
examined under a compound microscope. The cases of the trichopterans (n = 15) and
tubes of the chironomids (n = 15) were examined and photographed by a scanning electron
microscope (SEM, LEO model 1450VP) to determine whether these insects use the sponge
spicules to construct their cases or tubes.

The water quality parameters were evaluated at two shallow water depths, (0.3 m
and 1 m), during the dry season–northeast monsoon. The water quality parameters,
such as dissolved oxygen (DO), electrical conductivity, total dissolved solids (TDS), water
temperature, pH and flow velocity, were measured in the field, along with the collections
of sponges at each depth, by portable digital instruments (a dissolved oxygen meter YSI
model 57 (Yellow Spring Instrument Co. Inc., Yellow Spring, MP, USA); conductivity
meter Fisher Scientific model 09-326-2 (Fisher Scientific International Inc., Pittsburgh, PA,
USA); pH meter HACH sensionTM1 (HACH Company, Loveland, CO, USA); Genuine
Gurley® current meter model D625 digital pygmy meter with Model 1100 Flow Velocity
Indicator (Gurley Precision Instruments, New York, NY, USA)). The suspended solids (SS),
turbidity, nitrate, and phosphate were measured in the laboratory by the HACH DR/2010
Spectrophotometer (HACH Company, Loveland, CO, USA). The biological oxygen demand
(5 days, 20 ◦C) (BOD5) was also evaluated. The difference in the environmental parameters
between the two water depths was determined by the Mann–Whitney U test with SPSS for
Windows software, version 16.

3. Results
3.1. Physicochemical Parameters

The mean values of most of the physicochemical parameters were not significantly
different between 0.3 m and 1 m, except flow velocity and DO, which were significantly
higher at 1.0 m (p < 0.05, Supplementary Materials Table S1). Due to unavailable data from
the deep zone, the comparative analyses on the suspended solids, turbidity, nitrate, and
phosphate at the different water depths were not carried out.

3.2. Composition and Abundance of Associated Aquatic Insects

A total of 379 larvae and pupae of aquatic insects belonging to 4 orders, 10 families, and
19 taxa were recorded, by microscopical screening, from 14 sponge samples at two water
depths at Ban Huai Sai (Table 1; Figures 3–6). The dominant larvae colonizing C. siamensis
were Trichoptera (48.81%) and Diptera (47.75%) (Figure 3b–d), whereas Neuroptera and
Ephemeroptera were less represented. The relative abundance of associated insect taxa
varied from 3 to 94 individuals per sponge specimen and ranged from 140 specimens
(14 taxa) at 0.3 m depth to 239 specimens (16 taxa) at 1 m depth. The egg jelly envelops
of Povilla heardi Hubbard, 1984 (Ephemeroptera, Polymitarcyidae) were also found on the
sponge surface (Figure 6a,b).

The most dominant taxa in the Pong River were Ecnomus spp., followed by Amphipsyche
meridiana Ulmer, 1909 (Trichoptera), Polypedilum sp., and Xenochironomus sp. (Diptera),
making up 77.8% of the specimens. The larval stages of first three genera are clingers, but
Xenochironomus is a burrower in sponges. Eleven taxa were shared by both water depths, i.e.,
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Polypedilum sp. was present in all the samples, followed by Ecnomus and Xenochironomus,
respectively. The chironomid larvae Ablabesmyia and Dicrotendipes were found from six
out of the seven sponges at the 0.3 m water depth. The larvae of Sisyra sp. were only 2.3%
(n = 9), the pupae of chironomids 2.3% (n = 9), and the caddisflies 1% (n = 4) were also
recorded (Table 1). The cluster analysis, based on Jaccard’s similarity index, relying on
presence/absence data, showed differences in the aquatic insect composition among the
fourteen sponge samples and separated them into two main clusters (Figure 7). One cluster
comprised the shallow-water samples (0.3 m) and the other comprised all but one of those
from the deep water (1 m).

Table 1. Checklist of aquatic insects associated with Corvospongilla siamensis in the Pong River (Lower
Mekong, Thailand). Total number of larvae and/or pupae in each sponge sample at two water depths.
Presence of eggs is indicated by asterisk (*).

Taxa

Number of Individuals

TotalDepth 0.3 m Depth 1.0 m

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Ephemeroptera
Baetidae gen. sp. - - - - - - - 1 - - - - - - 1
Caenidae

Caenodes sp. - 2 - - - 1 - - - - - - - - 3
Polymitarcyidae

Povilla heardi - - - - - - - * - - - - - - -
Neuroptera

Sisyridae
Sisyra sp. - 3 1 - 1 - - 2 - 1 1 - - - 9

Trichoptera
Ecnomidae

Ecnomus spp. - 8 3 1 4 1 4 21 27 12 7 1 2 1 92
Hydropsychidae

Amphipsyche meridiana - - - - - - - 62 20 - - - - 2 84
Hydroptilidae gen. sp. - 1 - - - - - 4 1 1 - - - - 7
Trichoptera fam. gen. - - - - - - 1 - - 1 - - - - 2

Diptera
Chironomidae

Ablabesmyia sp. 1 3 3 1 1 1 - - - - - - - - 10
Demicryptochironomus sp. - 2 - - - - 1 - - - - - - - 3
Dicrotendipes sp. - 2 6 1 2 1 1 - - - - - 1 - 14
Nanocladius sp. - - - - - 1 - 1 - - - - 1 - 3
Paramerina sp. - 3 2 - - - 1 - - - 1 - 1 - 8
Polypedilum sp. 2 12 9 5 5 1 7 3 4 8 6 8 3 3 76
Rheotanytarsus sp. - - - - - - - - 5 1 2 1 - - 9
Tanytarsus sp. - 1 - 2 - - 2 - - 1 - - - - 6
Xenochironomus sp. - 9 10 1 3 - 2 - 7 3 3 2 1 2 43
Chironomidae gen. sp. - 1 4 - - - - - 1 - 1 1 - - 8

Ceratopogonidae
Bezzia sp. - - - - - - - - - 1 - - - - 1

Total 3 47 38 11 16 6 19 94 65 29 21 13 9 8 379

3.3. Gut Content Analysis

The gut content analysis of the four dominant taxa, i.e., Ecnomus spp., A. meridiana,
Polypedilum sp., and Xenochironomus sp., respectively, showed a predominance of detri-
tus, followed by diatoms, fine detritus material, rotifers, and sponge siliceous spicules
(Figure 8c,d). Generally, the entire strongyle megascleres characterized by rounded tips
were commonly found in the digestive tract, whereas fragments of these spicules rarely
occurred. The percentage of spicules occurring in the gut contents of the representative
dominant genera showed a wide range, i.e., Ecnomus spp. (70%; Trichoptera), A. meridiana
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(56.6%; Trichoptera), Xenochironomus sp. (6.6%; Chironomidae), and Polypedilum sp. (6.6%;
Chironomidae). In addition, megascleres and microscleres of sponges were also found in
the chironomids Ablabesmyia sp. and Paramerina sp.
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Figure 3. Corvospongilla siamensis (Porifera: Spongillida) in vivo settled on the raft artificial substrata
of Pong River (Lower Mekong). (a) Outline of sponge conulose body surface with a variety of
microhabitats at level of irregularly scattered crevices and ridges, and tube-like exhalant aquiferous
openings (oscules). (b) Caddisfly larvae (Amphipsyche meridiana, Hydropsychidae, Trichoptera)
crawling on a cavity-rich surface of a greenish sponge. (c,d) Chironomid larvae (Chironomidae,
Diptera) burrowing in the inner sponge body.
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Figure 4. Corvospongilla siamensis morphology (Pong River, Lower Mekong). (a,b) Heterogeneous
microhabitat at the sponge irregular surface with ridges and large tube-like exhalant aquiferous
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Figure 5. Sponge-dwelling caddisfly and non-biting midge larvae recycling siliceous spicules of
Corvospongilla siamensis (Lower Mekong, Southeast Asia). (a,b) Pupae case of spongivorous Amphipsy-
che meridiana (Trichoptera, Hydropsychidae) reinforced by megascleres and microscleres (arrows,
SEM) adhering to the silk network of the inner and outer cases. (c,d) Case of a chironomid larva
(Chironomidae, Diptera) with a dense network of spicules (arrow, LM).
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Figure 6. Eggs of Povilla heardi (Ephemeroptera, Polymitarcyidae) on Corvospongilla siamensis (Lower
Mekong, Southeast Asia). (a) Egg jelly envelopes (arrows) on the irregular surface of a live sponge.
(b) Eggs viewed by light microscopy.

The texture of the pupal case of the A. meridiana studied by an SEM showed that silk
thread is a major component of the case, strengthened by two types of sponge spicules
(microscleres, gemmuloscleres, and megascleres) on both the inner and outer layers of the
cases (Figure 5a,b). The observations on the tubes of the chironomid larvae and pupae
stages highlighted that both are made, in part, by sponge spicules (Figure 5c,d).
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Figure 8. Amphipsyche meridiana (Trichoptera, Hydropsychidae) associated with Corvospongilla siamen-
sis (Lower Mekong, Southeast Asia). (a,b) Scheme of body and digestive tract of the sponge-eating
caddisfly larva (adapted from Sangpradub and Giller [27]). The position of the proventriculus (*) is
indicated in (b). (c) Siliceous spicules with blunt tips (arrows) in the proventriculus. (d) Food debris
in the midgut, i.e., diatoms and a rotifer.
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4. Discussion
4.1. Freshwater Sponges as Microhabitat for Associated Insects

The data highlight that many insects can inhabit sponges in the Mekong River Basin
(Table 1), matching the previous studies on sponge-dwelling entomofauna, reporting
10 orders of Insecta inhabiting almost 20 Spongillida species from all the biogeographic
regions, except Antarctica (Table 2). The flourishing population of Corvospongilla (Figure 9)
is a temporary microhabitat for the long-lasting larval and pupal stages of many insects,
either at the body surface and canals, or within the extracellular matrix, suggesting that,
also, other Spongillida species play the same functional role as the habitat-forming species
in the same site, e.g., Oncosclera asiatica [28].

Table 2. Worldwide inventory of aquatic Insecta inhabiting Spongillida (Porifera) so far reported.
Sponge species belong to families Lubomirskiidae, Metaniidae, Potamolepidae, and Spongillidae.
Taxa and countries listed in alphabetical order. References listed in chronological order.

Insect Taxa Sponge Taxa References Biogeographic Region/Country

Ephemeroptera (Baetidae, Caenidae,
Polymitarcyidae)
Neuroptera (Sisyridae)
Trichoptera (Ecnomidae, Hydroptilidae,
Hydropsychidae)
Diptera (Ceratopogonidae, Chironomidae)

Corvospongilla siamensis

Present paper, Annandale [29], Schröder [30]
Oriental-Himalayan
Thailand; Borneo; India; Java;
Philippines

Eunapius carteri
Radiospongilla crateriformis
Spongilla alba
Spongillida fam. gen. sp.

— Spongilla alba
Schröder [30], Mansell [31] Afrotropical

Madagascar; South AfricaSpongillida fam. gen. sp.

Trichoptera (Hydroptilidae) Spongillida fam. gen. sp. Wells [32], Wells & Johanson [33], Forteath &
Osborne [34], Forteath et al. [35]

Australasian
Australia; New Zealand;
New Caledonia; Tasmania

Diptera (Chironomidae)
Ephemeroptera (Baetidae, Caenidae)
Neuroptera (Sisyridae)
Megaloptera (Sialidae)
Trichoptera (Apataniidae, Brachycentridae,
Ecnomidae,
Hydropsychidae, Hydroptilidae,
Leptoceridae,
Limnephilidae, Polycentropodidae,
Psychomyiidae)

Ephydatia fluviatilis

Pavesi [36], Arndt [37], Rezvoi [38], Berg [39],
Gaumont [40], Moretti & Corallini-Sorcetti [41],
Konopacka & Socinski [42],
Kamaltynov et al. [43],
Weissmair & Mildner [44], Gugel [45],
Corallini & Gaino [46,47],
Gaino et al. [48], Wallace et al. [49],
Weinberg et al. [50], Loru et al. [51],
Schiffels [52], Sokolova & Palatov [53],
Palatov & Sokolova [54], Zvereva et al. [55],
Ostrovsky [56]

Palaearctic
Algeria; Austria; China; East Siberia;
Denmark; England; France;
Germany; Italy; Japan; Mongolia;
Poland; Russia; Scandinavia; Serbia;
Spain

Ephydatia muelleri
Eunapius fragilis
Heteromeyenia sp.
Lubomirskia baikalensis
Spongilla lacustris
Spongillida fam. gen. sp.

Diptera (Chironomidae, Simuliidae)
Coleoptera (Dytiscidae)
Ephemeroptera (Polymitarcyidae,
Tricorythidae)
Hemiptera (Belostomatidae)
Lepidoptera (Pyralidae)
Neuroptera (Sisyridae)
Odonata (Coenagrionidae, Libellulidae)
Trichoptera (Hydropsychidae,
Polycentropodidae)

Acalle recurvata

Melão & Rocha [57], Roque et al. [58],
Fusari et al. [59–62], Clavier et al. [63],
Hamada et al. [64], Bowles [65],
Ardila-Camacho & Martins [66], Assmar &
Salles [67], Fisher et al. [68], da Silva
Fernandes [69]

Neotropical
Argentina; Belize; Bolivia; Brazil;
Chile; Cuba; French Guiana;
Guatemala; Guyana; Honduras;
Mexico; Panama; Paraguay; Peru;
Suriname; Uruguay; Venezuela

Drulia uruguayensis
Corvoheteromeyenia australis
Corvospongilla seckti
Heteromeyenia cristalina
Metania spinata
Metania reticulata
Oncosclera navicella
Oncosclera spinifera
Radiospongilla inesi
Trochospongilla paulula

Neuroptera (Sisyridae)
Megaloptera
Trichoptera (Leptoceridae)

Eunapius fragilis

Brown [70], Parfin & Gurney [71],
Roback [72], Heiman & Knight [73],
Poirrier [74], Poirrier & Arceneaux [75],
Resh [76], Pennak [77],
Matteson & Jacobi [78], Stoakes et al. [79],
Clark [80], Pupedis [81],
Whitlock & Morse [82], Bowles [65,83], Cover
& Resh [84], Rothfuss & Heilveil [85],
Fisher et al. [68], Bowles & Courtney [86]

Nearctic
United States of America
Canada

Ephydatia muelleri
Ephydatia fluviatilis
Eunapius igloviformis
Dosilia radiospiculata
Heteromeyenia argirosperma
Heteromeyenia baileyi
Heteromeyenia repens
(as H. baileyi)
Racekiela ryderi
(as Heteromeyenia ryderi)
Radiospongilla crateriformis
Spongilla lacustris
Ephydatia robusta
(as Meyenia subdivisa)
Trochospongilla horrida
Trochospongilla leidii
(as T. leidyi)
Trochospongilla muelleri
Trochospongilla pennsylvanica
(as Tubella pennsylvanica)
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Figure 9. Dense assemblage of freshwater sponges with massive, irregular growth form as engineer-
ing species on farm nets in the Pong River (Lower Mekong, Southeast Asia). (a) The red area outlining
the body of Corvospongilla siamensis is ~800 cm2. (b) Living Corvospongilla sp. with associated algae.
(c) Dry freshwater sponges on net.

4.2. Associated Insects and Environmental Conditions

Even though the dissolved oxygen (DO) was significantly different between the two
depths, it did not seem to affect the sponge-dwelling insect assemblage structure, i.e., the
relative abundance and taxonomic richness.

The flow-velocity data also support the fact that the DO is not a limiting factor to the
sponges’ inhabitants in the study site, which is located near the outlet of the dam. This
could be due to both the oxygen contribution from the sponge algal symbiont (endocellular)
and the hydrodynamic condition of the sponge microenvironment. Indeed, the sponges’
pumping activity, involving conspicuous amounts of water, creates a microcirculation,
both within the sponge body (inner canals and cavities) and at its irregular surface (in-
halant openings with incurrent and oscules with outcurrent water), matching the previous
data [87,88].

Although the composition of the associated aquatic insects between the shallow and
deep zones is similar in sharing 11 taxa, it seems that the flow-velocity values could be a
factor that affects the number of Amphipsyche meridiana, inhabiting only two samples in
the deeper zone, while the higher values may favor these net-spinning larvae. In addition,
the division between the “shallow and deeper parts” of the cluster differs in the greater
abundance of Trichoptera, from the genus Ecnomus and Amphipsyche, requiring higher
oxygen concentrations than the chironomids, which is also confirmed by the environmental
data and could be the consequence of the higher flow velocity.

The colonization of Polypedilum sp. in all the samples indicates that Corvospongilla is a
favorable habitat matching the known wide habitat range of this chironomid genus [24,69].
The present data, reporting Chironomidae larvae fairly commonly in the sponges from
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both the two shallow zones, match those of the Chironomidae [48,61,69], which is well
represented in the Pong River’s soft bottom, ranging from pristine to impacted water quality
conditions [89]. Further in-depth analyses of the taxonomy and diversity of the chironomid
larvae in the Pong River will be essential to clarify the sponge–midge interactions.

The present data also corroborate those of Gugel [45], who reported that the high
larvae number of Ecnomus tenellus (Rambur, 1842) and Hydropsyche sp. occurring on
European sponges was higher than their occurrence independently from sponges. The
results confirm that sponges represent a favorable habitat for these larvae, as reported also
by Annandale [29,90] for other hydrographic basins of the Asian tropics.

4.3. Aquatic Insect Abundance, Sponge Size and Body Architecture

The high number of sponge-dwelling aquatic insects in this study occurred in a
silty riverbed with a dense population of long-living, massive sponges, characterized
by a 3D body architecture, rich in large inner canals/cavities and exhalant apertures
(Figures 3a,4a,b and 9), matching the investigations on marine sponge canals diameter and
body morphology inhabited by invertebrates [91,92]. The sponge body architecture, rich
in cavities, seems to provide a suitable space for some aquatic insects to segregate and
avoid predators, as suggested also by the high density of freshwater African A. meridiana
in vesicular rocks (i.e., volcanic rock pitted with many cavities/vesicles at its surface and
inside), which was about 10 times higher than those of non-vesicular rocks [93].

Only the biomass and numbers of three species of amphipods inhabiting sponges
are known to be correlated with the weight of a Baikalian sponge species, according to
Kamaltynov et al. [43], but the other fauna including insects showed no correlation.

4.4. Interspecific Relationships between Aquatic Insects and Sponges

Several genera of Insecta have been recognized as obligatory associated with sponges,
i.e., Ceraclea (Trichoptera), Demeijerea, Oukuriella, Xenochironomus (Chironomidae), Climacea,
and Sisyra (Neuroptera) [46,47,53,54,60,69,72,76,82,94] (see Table 2). Spongivory is, however,
rare, probably due to the production of sponge toxins and repellents [13,95]. Sisyridae larvae
are well known as obligate predators (spongivory) of freshwater sponges [71,76,84,96].

In the present study, the type of sponge–insect relationship ranges from incidental
to obligate. The larvae of Sisyra and Xenochironomus we discovered in sponges had never
been found in the Pong River’s macroinvertebrate community [89,97,98]. Weissmair and
Warninger [99] stated that the Sisyra adults need rich riparian habitats, which occur rarely
along the Pong River. This datum reinforces the opinion that the larvae of these taxa are
strictly associated with freshwater sponges.

Little information has been published in Asia on the Sisyra biology, ecology, and
phylogeny [100,101]. Only two species, Sisyra indica Needham, 1909, and Sisyra maculata
Monserrat, 1981, are known from Thailand [83,84,102,103], suggesting further studies on
neglected neuropterans and Xenochironomus species and their life cycles in tropical sponges
of Asia would be worthwhile.

4.5. Sponges and Gut Content of Their Associated Aquatic Insects

Roback [72] reported that the digestive tracts of caddisfly larvae belonging to the
genus Athripsodes were filled with debris and sponge spicules. These larvae ingest the
sponge tissues and do not merely use them as an occasional substrate or case-building
material. In this study, the gut contents of the caddisfly A. meridiana larvae (Figure 8a–d),
showing high percentages of diatoms, may indicate that these net-spinning caddisfly larvae
are filtering collectors. Our results agree with Boon [104], who concluded that the well-
developed gastric mill plates of A. meridiana are ideal for crushing diatoms. Although it is
known that sponges are not edible for most animals, due to their chemical deterrence, with
hard skeletal components and bioactive compounds, the occurrence of many spicules in
the digestive tracts may also suggest that A. meridiana feeds on the tissues of the sponge
when moving on its surface, which matches the previous reports [47,72]. Entire siliceous
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strongyle spicules in the digestive tract could improve the grinding or filtering of foods,
as suggested by not breaking down—even passing—the proventriculus, which consists of
large tooth plates ranging from 533 to 656 µm in length (Figure 8c). Moreover, it seems that
the spicules of C. siamensis, with typical blunt tips, cannot create a risk of damage to the gut
wall of spongivor insects, contrasting with the condition of caddisfly Ceraclea fulva (Rambur,
1842), displaying an abnormally thick peritrophic membrane shielding its soft internal
tissues from ingested spicules, with acute tips, of the sponge Ephydatia fluviatilis [46,47].

As for the pupal case of A. meridiana, an SEM analysis showed that sponge spicules
were interwoven in the case wall, which is similar to those observed in C. fulva. So, these
spicules seem to be useful material to reinforce the cases of the caddisfly larvae (Figure 5a,b).
The chironomid larvae and pupae also utilized the sponge spicules for constructing their
tubes and cases in the Pong River (Figure 5c,d), thus corroborating previous data on the
occurrence of sponge spicules in the gut [94].

4.6. Biodiversity and Conservation Perspectives

The results of this study expand our knowledge of freshwater sponges in Southeast
Asia, which is considered a biodiversity hotspot, highlighted by the 3007 new species of
vascular plants, fishes, amphibians, reptiles, birds, and mammals discovered in the Greater
Mekong region between 2007 and 2020 [105,106]. The description of three new Spongillida
species and a new record in Thailand and Vietnam [20,28,107,108], and ongoing discov-
eries in Thailand (Ruengsawang unpublished data), indicate that the sponges inhabiting
rivers, lakes, and wetlands in this region remain unexplored and are underestimated in
their biodiversity. Environmental impacts on freshwater sponges have been reported, i.e.,
temperature, heavy metal contamination [109], and habitat change, as one of biodiversity
loss drivers in Southeast Asia [110]. Therefore, a diversity assessment of this neglected
fauna is urgently needed.

In the case of the Pong River, the biofouling by sponges in fish culture, resulting in
clogging of the nets and decreased water circulation, was frequently found in the previous
and current studies [19]. Fish farmers lift their cage nets from the water to dry and remove
sponges for maintenance after fish harvesting (Figures 9 and 10). Skin irritation caused
by sponge spicules was also reported by the farmers. The advantages and disadvantages
of sponges biofouling in the fish culture in the Pong River need further research to fully
understand to demonstrate the ecological value of these animals.
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From the conservation aspect, it is clear that freshwater sponges play an important
role in aquatic ecosystems as biofilters, through their filter-feeding and water-pumping
activities and are vulnerable habitats for aquatic insects. The opportunistic insect from
this study, A. meridiana, adopts a variety of strategies to colonize and to use sponges
as a microhabitat, which agrees with Boon [93]. Despite freshwater sponges not being
threatened globally [1,10,109,111], the conservation and monitoring of freshwater sponges
in tropical Asia are needed to understand their status.

Synthesis

The data indicate that, worldwide, freshwater sponges perform functional roles as
ecosystem engineers, sensu Jones et al. [112]. They supply to insects: (a) persistent het-
erogeneous substrata and microclimatic conditions related to the sponges’ massive to
arborescent growth form and their physiological performance, (b) ecological refugia and
breeding/nursery grounds as a sheltering microhabitat for settling and the development of
eggs, (c) food source for detritivores by the continuous water-flow, trapping particulate
organic matter, as a foraging area, for eating on sponge-associated algae, and as prey for
predatory species on other hosted insects and a plethora of other invertebrates, (d) the
morpho-functional role of the siliceous spicules to strengthen the larval insect’s digestive
system and the cases of larvae and pupae, (e) protection against predators, (f) shelter for
withstanding floods, high siltation, and desiccation (dry season) during water level fluctua-
tions. Despite the sponges’ functional role as biofilters, on occasion, local people consider
these animals responsible for economic damage, e.g., on the health of fish in farming cages
along the Lower Mekong River. In agreement with the restoration science proposed by
Ormerod [113], we suggest that sponge farming in inland water could be an effective
nature-based solution to reduce biodiversity loss, as a management tool, by enhancing the
water quality. This is particularly relevant in tropical freshwater to support bioremediation
projects in restoring the environmental value, also in giving economic benefits to the lo-
cal people. Another key point could be a targeted action on the people’s environmental
education in order to raise awareness of freshwater bioresources conservation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d14110911/s1; Table S1: Mean values (±SD) for physicochemical
parameters during the dry season (northeast monsoon) at two shallow water depths inhabited by a
flourishing population of Corvospongilla siamensis and its associated insects in the Pong River (Lower
Mekong, Thailand).
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