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Abstract In this work, we establish a fixed point theorem for C∗-algebra-valued contractions in fuzzy

metric spaces in the sense of George and Veeramani [1]. We also have an application in integral equations.

Our results improve and generalize the corresponding results in the literature.
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1. Introduction and Preliminaries

The concept of fuzzy set was introduced by Zadeh [12] and fuzzy metric spaces initiated
by Kramosil and Michàlet [6]. After that, the concept of fuzzy metric spaces was modified
by George and Veeramani [1] as follows:

Definition 1.1. [1] Let X be an arbitrary nonempty set, △ a continuous t− norm, and
M a fuzzy set on X ×X × (0,∞). The 3-tuple (X,M,△) is called a fuzzy metric space
if satisfying the following conditions, for each x, y, z ∈ X and t, s > 0,

(i) M(x, y, t) > 0,
(ii) M(x, y, t) = 1 if and only if x = y for all t > 0,
(iii) M(x, y, t) = M(y, x, t),
(iv) M(x, y, t)△M(y, z, s) ≤ M(x, z, t+ s) for all t, s > 0,
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(v) M(x, y, ·) : (0,∞) → [0, 1] is continuous.
In this case, we also say that (X,M,△) is a fuzzy metric space under △. In the
sequel, we will only consider fuzzy metric space satisfying :

(vi) lim
t→∞

M(x, y, t) = 1 for all x, y ∈ X.

Remark 1.2. Let (X, d) be a metric space. We define a ∗ b = ab for all a, b ∈ [0, 1] and

Md(x, y, t) =
ktn

ktn +md(x, y)
for every (x, y, t) ∈ X ×X × [0,∞), where k,m and n are

positive real numbers then (X,Md, ∗) is a fuzzy metric space. Thus, every metric space

induces a fuzzy metric space. The fuzzy metric given by Md(x, y, t) =
t

t+ d(x, y)
for

every (x, y, t) ∈ X ×X × [0,∞) is called standard fuzzy metrics.

The concept of continuity is given by the following:

Definition 1.3. [8] Let (X,M,△) be a fuzzy metric space. A sequence {xn}n∈N in X is
said to be convergent to x ∈ X if

lim
n∞

M(xn, x, t) = 1

for all t > 0.
A sequence {xn} in X is said to be a G-Cauchy sequence if

lim
n∞

M(xn, xn+p, t) = 1

for all t > 0 and p ∈ N.

A fuzzy metric space is called G-complete if every G-Cauchy sequence converges in X

Lemma 1.4. [8] Let (X,M,△) be a fuzzy metric space and {xn}, {yn} are sequence in
X such that xn → x, yn → y then M(xn, yn, t) → M(x, y, t) for every continuity point t
of M(x, y, ·).

Now, we recall some basic definitions of C∗-algebra. For more details, we refer to
[5, 7, 9]. An algebra A is said to be a complex algebra with a conjugate linear involution
mapping ∗ : A → A defined by a 7→ a∗, that is, for all a, b ∈ A and z ∈ C we have
(za + b)∗ = za∗ + b∗, (a∗)∗ = a and (ab)∗ = b∗a∗, is said to be a ∗-algebra. If a ∈ A,
then a∗ is said to be the adjoint of a. Moreover, if A does have a unit, we write it as
1 or 1A, then A is said to be an unital ∗-algebra. An unital ∗-algebra A with this norm,
it is completely satisfying ∥a∗∥ = ∥a∥ for all a ∈ A is said to be a Banach ∗-algebra. A
Banach ∗-algebra A is said to be a C∗-algebra if it satisfies ∥a∗a∥ = ∥a∥2 for all a ∈ A.
Let A+ be a set of all positive elements and an element a ∈ A+ is said to be a positive
element if a = a∗ and r(a) ⊂ R+, where r(a) is the spectrum of a. If a ∈ A+ is positive,
we write it as 0A ≤ a. Using positive elements, one can define a partial ordering on A as
follows: a ≤ b if and only if b − a ≥ 0A. For each positive element a of a C∗-algebra A
has a unique positive square root.

Recently, Zhenhua Ma et al. [7] introduced a new concept of C∗-algebra-valued metric
spaces.

Definition 1.5. [7] LetX be a nonempty set. Suppose that the mapping dA : X×X → A
satisfies:
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(1) dA(x, y) > 0A,
(2) dA(x, y) = 0A if and only if x = y,
(3) dA(x, y) = dA(y, x),
(4) dA(x, y) ≤ dA(x, z) + dA(z, y) for all x, y, z ∈ X.

Then, d is called a C∗-algebra-valued metric on X and (X,A, dA) is called a C∗-algebra-
valued metric space.

Definition 1.6. [7] Let (X,A, dA) be a C∗-algebra-valued metric space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X with respect
A if lim

n→∞
dA(xn, x) = 0.

(2) A sequence {xn} in X is called a Cauchy sequence with respect A if for each
ϵ > 0, there exits n0 ∈ N such that ||dA(xn, xm)|| ≤ ϵ for each n,m ≥ n0.

(3) A C∗-algebra-valued metric space in which every Cauchy sequence is conver-
gent with respect A is said to be complete.

Example 1.7. [7] Let X = R and A = M2(R) define
d(x, y) = diag(|x− y|, α|x− y|)

for any x, y ∈ X and α ≥ 0 is a constant. It is easy to verify d is a C∗-algebra-valued
metric space and (X,M2(R), d) is a complete C∗-algebra-valued metric space by the
completeness of R.

The author [7] also defined a C∗-algebra-valued contraction and proved a fixed point
theorem which generalizes the Banach contraction principle.

Definition 1.8. [7] Let (X,A, dA) be a C∗-algebra-valued metric space. A mapping
T : X → X is called a C∗-algebra-valued contraction mapping on X, if there exists b ∈ A
with ∥b∥ < 1 such that

dA(Tx, Ty) ≤ b∗dA(x, y)b, ∀x, y ∈ X.

In this paper, we introduce a C∗-algebra-valued contraction mapping in fuzzy metric
spaces and prove existence theorem of fixed point for such maps. Our results substantially
generalize several comparable results in the literature (see [7, 9]).

2. Main Results

In this section, we first define a new notion of C∗-algebra-valued fuzzy metric spaces.

Definition 2.1. Let X be an arbitrary nonempty set, △ is a continuous t− norm, and
a fuzzy set MA : X ×X × (0,∞) → [0A, 1A]. The 4-tuple (X,A,MA,△) is called a C∗-
algebra valued fuzzy metric space if satisfying the following conditions, for each x, y, z ∈ X
and t, s > 0,

(i) MA(x, y, t) > 0A,
(ii) MA(x, y, t) = 1A if and only if x = y for all t > 0,
(iii) MA(x, y, t) = MA(y, x, t),
(iv) MA(x, y, t)△MA(y, z, s) ≤ MA(x, z, t+ s) for all t, s > 0,
(v) MA(x, y, ·) : (0,∞) → [0A, 1A] is continuous.
In this case, we also say that (X,A,MA,△) is a C∗-algebra valued fuzzy metric
space under △. In the sequel, we will only consider C∗-algebra valued fuzzy
metric space satisfying :
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(vi) lim
t→∞

MA(x, y, t) = 1A for all x, y ∈ X.

It is obvious that if X is a Banach space, then (X,A,MA,△) is a complete C∗-algebra
valued fuzzy metric space if for t > 0, we set

MA(x, y, t) =

(
t

t+ |x− y|

)
I.

Next, we present a C∗-algebra valued contraction mapping in fuzzy metric spaces.

Definition 2.2. Let X be an arbitrary nonempty set. The 3-tuple (X,A,MA,△) be a
fuzzy metric space. A mapping T : X → X is said to be a C∗-algebra valued contraction
mapping if there exists an b ∈ A with ||b|| < 1 such that

1

MA(Tx, Ty, t)
− 1 ≤ b∗

(
1

MA(x, y, t)
− 1

)
b (2.1)

for all x, y ∈ X and t > 0.

Now, we ready to prove existence theorem for C∗-algebra valued contraction mapping
in fuzzy metric spaces.

Theorem 2.3. Let (X,A,MA,△) be a complete fuzzy metric space. A mapping T : X →
X is a C∗-algebra valued contraction mapping. Then, T has a unique fixed point in X.

Proof. It is obvious that if b = 0A, then there is nothing to prove. Suppose that b ̸= 0A,
let x0 ∈ X be a arbitrary. We define a sequence {xn}n≥0 by xn+1 = Txn = Tnx0 and
denote the element MA(x0, x1, t) in A.

By C∗-algebra if a1, a2 ∈ A+ and a1 ≤ a2, then z∗a1z ≤ z∗a2z for all z ∈ A. Thus,
1

MA(xn, xn+1, t)
− 1 =

1

MA(Txn−1, Txn, t)
− 1

≤ b∗
(

1

MA(xn−1, xn, t)
− 1

)
b

≤ (b∗)2
(

1

MA(xn−2, xn−1, t)
− 1

)
b2

...

≤ (b∗)n
(

1

MA(x0, x1, t)
− 1

)
bn

= (b∗)nMbn, where M =
1

MA(x0, x1, t)
− 1.

Suppose that, for n + 1 > m, by the triangle inequality of fuzzy metric spaces. We
have

1

MA(xm, xn+1, t)
− 1 ≤ 1

MA(xm, xm+1, t)
− 1 +

1

MA(xm+1, xm+2, t)
− 1 + . . .

+
1

MA(xn−1, xn, t)
− 1 +

1

MA(xn, xn+1, t)
− 1

≤ (b∗)mMbm + (b∗)m+1Mbm+1 + . . .+ (b∗)nMbn

=

n∑
i=m

(b∗)iMbi
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=

n∑
i=m

(b∗)iM
1
2M

1
2 bi

=

n∑
i=m

(M
1
2 bi)∗(M

1
2 bi)

=

n∑
i=m

∣∣∣M 1
2 bi

∣∣∣2
≤

∥∥∥∥∥
n∑

i=m

∣∣∣M 1
2 bi

∣∣∣2∥∥∥∥∥ I
≤

n∑
i=m

∥∥∥M 1
2

∥∥∥2 · ∥∥bi∥∥2 I
≤

∥∥∥M 1
2

∥∥∥2 n∑
i=m

∥∥bi∥∥2 I
≤ ∥M∥ · ∥b∥2m

1− ∥b∥
I → 0A, where m → ∞.

So {xn}n≥0 is a Cauchy sequence in X with resect to A. From (X,M,△) is complete,
there exists x ∈ X such that lim

n→∞
MA(xn, x, t) = 1, that is, lim

n→∞
MA(Txn−1, x, t) = 1.

Since

0A ≤ 1

MA(Tx, x, t)
− 1

≤ 1

MA(Tx, Txn, t)
− 1 +

1

MA(Txn, x, t)
− 1

≤ b∗
(

1

MA(x, xn, t)
− 1

)
b+

(
1

MA(xn+1, x, t)
− 1

)
≤ 0A, where n → ∞.

Therefore, Tx = x, that is, x is a fixed point of T .
Now, we will show that x is a unique fixed point. Suppose that z ̸= x be an another

fixed point of T , then Tz ̸= Tx. From contraction inequality (2.1) we have,

1

MA(z, x, t)
− 1 =

1

MA(Tz, Tx, t)
− 1

≤ b∗
(

1

MA(z, x, t)
− 1

)
b

≤
(

1

MA(z, x, t)
− 1

)
b∗b

≤
(

1

MA(z, x, t)
− 1

)
∥b∥2.

Since ∥b∥ < 1, it is a contradiction. Hence, T has a unique fixed point. The proof is
therefore completed.

Remark 2.4. By Theorem 2.3, if we changing A+ = R+ on the C∗-algebra valued fuzzy
metric space, then it becomes the fuzzy metric spaces from Theorem 2.3.
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3. Application

In this section, we devote our main result to the existence of a solution of integral
equations. Let X = L∞(E) and consider H = L∞(E) be a Hilbert space, where E
be a set of Lebesgue measurable. For f, g ∈ X, we define MA(f, g, t) = π| t

t+|f−g| |
, where

πh(x) = h ·x for x ∈ H. Suppose that a function F : E2×R → R, there exists g : E2 → R
is a continuous function, sup

u∈E

∫
E
| g(u, z) | dz ≤ 1 and α ∈ (0, 1) for u, v ∈ E and y, z ∈ R

we have∣∣∣∣ t

t+ F (u, v, y)
− t

t+ F (u, v, z)

∣∣∣∣ ≤ α

∣∣∣∣g(u, v)( t

t+ y
− t

t+ z

)∣∣∣∣ .
Then, x∗ ∈ X is a unique solution of the integral equation

x(u) =

∫
E

F (u, v, x(v))dv), u ∈ E. (3.1)

Proof. Let (X,L(H),M,△) be a complete C∗- algebra valued fuzzy metric space with
respect to L(H). Suppose that T : X → X be a self mapping, we obtain

Tx(u) =

∫
E

F (u, v, x(v))dv), u ∈ E.

Now,

∥MA(Tx, Ty, t)∥

= sup
∥h∥=1

(
π| t

t+|Tx−Ty| |
h, h

)
= sup

∥h∥=1

∫
E

(∣∣∣∣∫
E

(
t

t+ F (u, v, x(v))
− t

t+ F (u, v, y(v))

)
dv

∣∣∣∣)h(u)h(u)du

≤ sup
∥h∥=1

∫
E

(∫
E

∣∣∣∣( t

t+ F (u, v, x(v))
− t

t+ F (u, v, y(v))

)∣∣∣∣ dv) |h(u)|2du

≤ sup
∥h∥=1

∫
E

(∫
E

∣∣∣∣αg(u, v)( t

t+ x(v)
− t

t+ y(v)

)∣∣∣∣ dv) |h(u)|2du

≤ α sup
u∈E

∫
E

|g(u, v)| dv · sup
∥h∥=1

∫
E

|h(u)|2 du ·
∥∥∥∥ t

t+ x(v)
− t

t+ y(v)

∥∥∥∥
∞

≤ α

∥∥∥∥ t

t+ x(v)
− t

t+ y(v)

∥∥∥∥
∞

≤ ∥b∥ ∥MA(x, y, t)∥ .

Since ∥b∥ < 1, then x∗ ∈ X is a unique solution of the integral equation. The proof is
therefore completed.
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