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Abstract

In this paper, we introduce the new concept of multivalued contraction mappings extend to C∗-algebra-
valued b-metric spaces. The existence of α-fuzzy fixed points for nonlinear mappings in C∗-algebra-valued b-
metric spaces. Then, α-fuzzy fixed point results for Banach’s C∗-algebra contraction mappings are obtained.
Also, we give some examples for support our main results.
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1. Introduction

In 1981, Heilpern [5] studied and introduced the notion of fuzzy contraction mappings and proved a fixed
point theorems. Frigon and Regan [4] generalized the Heilpern’s theorem under a contractive condition of
Nadler’s fixed point theorem for 1-level sets (i.e., [Tx]1) of a fuzzy mapping T , where 1-level sets are not
a convex set and a compact set. Amemiya and Takahashi [2] studied some properties of contraction type
set-valued and others have studied fuzzy contraction mappings to obtain fixed points of fuzzy contraction
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Let F : X → C(X) be given by Fx = [Tx]1. Notice that F satisfies the conditions of Nadler’s fixed point theorem. As a

result there exists x ∈ X with x ∈ Fx = [Tx]1.
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mappings to see [5, 11]. Phiangsungnoen [9] studied fuzzy fixed point theorems for multivalued fuzzy
contractions in b-metric spaces.

Recently, Ma et al. [7] introduced the notion of C∗-algebra-valued metric space and presented the
Banach contraction principle for C∗-algebra-valued metric space. Lather, Kamran [6] generalized the notion
of C∗-algebra-valued b-metric space and proved certain fixed point results.

In this paper, we using the concept of C∗-algebra-valued b-metric space and consequently the existence
and an α-fuzzy fixed point for such a mapping are obtained. Our results substantially generalize several
comparable results from the literature corresponding to see [8, 9]. In the finall, we give some examples for
support our main theorems.

2. Preliminaries

2.1. C∗-algebra-valued b-metric spaces

We shall study the basic definitions and properties about C∗-algebra-valued b-metric spaces.

Definition 2.1 ([6]). Let A be a C∗-algebra, and X be an arbitrary nonempty set, b ∈ A be shch that
∥ b ∥≥ 1. A mapping db : X2 → A+ is called a C∗-algebra-valued b-metric on X if for all x, y, z ∈ A, the
following properties are satisfied:

(i) db(x, y) = 0A if and only if x = y;
(ii) db(x, y) = db(y, x);
(iii) db(x, z) ≼ s[db(x, y) + db(y, z)].

The 3− tuple (X,A, db) is called a C∗-algebra-valued b-metric space with coefficient s.

Example 2.2 ([6]). Let X = lp be the set of sequences {xn} in R such that

∞∑
n=1

|xn|p < ∞ and 0 < p < 1.

Let A =M2(R). For x = xn, y = yn ∈ lp, define db : X
2 → A+ as follows:

db(x, y) =


( ∞∑
n=1

|xn − yn|p
) 1

p 0

0
( ∞∑
n=1

|xn − yn|p
) 1

p

 .

Then, (X,A, db) is a C∗-algebra-valued b-metric space with coefficient s =

(
2

1
p 0

0 2
1
p

)
such that ∥ s ∥= 2

1
p .

Thus ( ∞∑
n=1

|xn − zn|p
) 1

p ≤
(
2p
) 1

p

[( ∞∑
n=1

|xn − yn|p
) 1

p +
( ∞∑
n=1

|xn − yn|p
) 1

p

]
.

Definition 2.3 ([6]). Let (X,A, db) be a C∗-algebra-valued b-metric space. A sequence {xn} in X is said
to be convergent to a point x ∈ X with respect to the algebra A if and only if for every ε > 0, there exists
N ∈ N such that ∥ db(xn, x) ∥< ε for every n > N . Symbolically, we then write lim

n→∞
xn = x.

Definition 2.4 ([6]). A sequence {xn} in X is called a Cauchy sequence with respect to A if for every ε > 0,
there exists N ∈ N such that ∥ db(xn, xm) ∥< ε for every n, m > N .

Definition 2.5 ([6]). A C∗-algebra-valued b-metric space (X,A, db) is complete if every Cauchy sequence
in X is convergent with respect to A.

Definition 2.6 ([6]). Let (X,A, db) be a C∗-algebra-valued b-metric space. A contraction on X is a mapping
T : X → X if there exists an a ∈ A with ∥ a ∥< 1

db(Tx, Ty) ≼ a∗db(x, y)a (2.1)

for all x, y ∈ X.
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2.2. An α-fuzzy fixed points

Let X be a nonempty set and (X,A, db) be a C∗-algebra-valued b-metric space. A fuzzy set M in X is
characterized by a membership function M : X → [0, 1] such that each element x ∈ X is associated with a
real number M(x) ∈ [0, 1]. Let F (X) be a collection of all fuzzy subsets of X and M be a fuzzy set in X.
If α ∈ (0, 1], then the α-level set Mα of M is defined as Mα = {x ∈ X : M(x) ≥ α}. For α = 0, we have
M0 = {x ∈ X :M(x) > 0}, where M denotes the closure of a set M in (X, d). A fuzzy setM(x) ≤ N(x) if
and only if M is said to be more accurate than fuzzy set N , define by M → N for each x in X. It is obvious
that if 0 < α ≤ β ≤ 1, then Mβ ⊆Mα.

Now, for x ∈ X, M,N ∈ F (X), α ∈ [0, 1] and [M ]α, [N ]α ∈ CB(X). Define

Wα(X) = {M ∈ IX :Mα is nonempty and compact}.

For M,N ∈Wα(X) and α ∈ [0, 1], let

pα(M,N) = inf{d(x, y);x ∈Mα; y ∈ Nα},
H(M,N) = max{ sup

x∈Mα

d(x,Nα), sup
y∈Nα

d(y,Mα)},

d∞(M,N) = sup
α
H(M,N).

Note that pα is a nondecreasing mapping of α and H a metric on Wα(X).
We write p(x,N) instead of p({x}, N). A fuzzy set M in a metric linear space V is said to be an

approximate quantity if and only if [M ]α is compact and convex in V for each α ∈ [0, 1] and sup
x∈V

M(x) = 1.

We denote the collection of all approximate quantities in a metric linear space X by Wα(X).
We following the concept of a α-fuzzy fixed point:

Definition 2.7. Let (X,A, db) be a C∗-algebra-valued b-metric space and T be a fuzzy mappings from X
into F (X). A point z in X is said to be an α-fuzzy fixed point of T if z ∈ [Tz]α.

3. Main results

From the concept of C∗-algebra-valued contractions in [7], we defined the new notion of Banach’s C∗-
algebra contractions in C∗-algebra-valued b-metric space as follows.

Definition 3.1. Let (X,A, db) be a C∗-algebra-valued b-metric space. A mapping T : X → F (X) is said
to be an Banach’s C∗-algebra contraction on (X,A, db) if there exists a a ∈ A with ∥ a ∥< 1

H ([Tx]α, [Ty]α) ≼ a∗db(x, y)a for all x, y ∈ X. (3.1)

Now, we start and prove some α-fuzzy fixed point results for Banach’s C∗-algebra contractions as follows.

Theorem 3.2. Let X be a nonempty set and let (X,A, db) is a complete C∗-algebra-valued b-metric space
with coefficient s. A fuzzy mapping T : X → F (X) be a Banach’s C∗-algebra contraction, there exists a ∈ A
such that ∥ s ∥∥ a ∥2< 1. If there exists a point xα ∈ X such that xα ⊂ [Tx]α, then T has an α-fuzzy fixed
point.

Proof. Let x0 be arbitrary point in X. We define the sequence in X as xn+1 ∈ [Txn]α for any n ∈ N ∪ {0}.
If there exists n0 ∈ N ∪ {0} such that xn0+1 = xn0 , then xn0 ∈ [Txn0 ]α. This proves that xn0 is an α-fuzzy
fixed point of T .
Assume that xn+1 ̸= xn for any n ∈ N ∪ {0}. From (3.1) that for each n ∈ N, we obtain

0A ≼ db(xn, xn+1) ≼ H([Txn−1]α, [Txn]α)

≼ a∗db(xn−1, xn)a

= a∗db([Txn−2]α, [Txn−1]α)a
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≼ (a∗)2db(xn−2, xn−1)a
2

= (a∗)2db([Txn−3]α, [Txn−2]α)a
2

≼ (a∗)3db(xn−3, xn−2)a
3

...

≼ (a∗)ndb(x0, x1)a
n

= (a∗)nMan, whereM = db(x0, x1).

For m,n ∈ N with n > m, we have

db(xm, xn) ≼ sdb(xm, xm+1) + s2db(xm+1, xm+2) + . . .+ sn−m−1db(xn−2, xn−1)

+ sn−mdb(xn−1, xn)

≼ s(a∗)mMam + s2(a∗)m+1Mam+1 + . . .+ sn−m−1(a∗)n−2Man−2

+ sn−m(a∗)n−1Man−1

= s[(a∗)mMam + s(a∗)m+1Mam+1 + . . .+ sn−m−2(a∗)n−2Man−2

+ sn−m−1(a∗)n−1Man−1]

= s

n−1∑
i=m

si−m(a∗)iMai

= s
n−1∑
i=m

si−m(a∗)iM
1
2M

1
2ai

= s

n−1∑
i=m

si−m(M
1
2ai)∗(M

1
2ai)

= s

n−1∑
i=m

si−m|M
1
2ai|2

≼
∣∣∣∣∣∣s n−1∑

i=m

si−m|M
1
2ai|2

∣∣∣∣∣∣I
≼
∣∣∣∣s∣∣∣∣ n−1∑

i=m

∣∣∣∣si−m
∣∣∣∣∣∣∣∣M 1

2

∣∣∣∣2∣∣∣∣ai∣∣∣∣2I
≼
∣∣∣∣s∣∣∣∣1−m∣∣∣∣M 1

2

∣∣∣∣2 n−1∑
i=m

∣∣∣∣si∣∣∣∣∣∣∣∣ai∣∣∣∣2I
≼
∣∣∣∣s∣∣∣∣1−m∣∣∣∣M 1

2

∣∣∣∣2 n−1∑
i=m

∣∣∣∣si∣∣∣∣∣∣∣∣a2∣∣∣∣iI
≼
∣∣∣∣s∣∣∣∣1−m∣∣∣∣M 1

2

∣∣∣∣2 n−1∑
i=m

(
||s||
∣∣∣∣a2∣∣∣∣)iI −→ 0A (m→ ∞).

Since, ∥ s ∥∥ a ∥2< 1 implies that
(
∥ s ∥∥ a ∥2

)m
→ 0, then the series

n−1∑
i=m

(
∥ s ∥∥ a ∥2

)i
is a converges,

we get that {xn}n∈N is a Cauchy sequence in X with respect to A. Since (X,A, db) is complete, there exists
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z ∈ X, we have lim
n→+∞

xn = z. Next, we will show that z is an α-fuzzy fixed point. We claim that z ∈ [Tz]α,

by condition (iii) the triangle inequality, we have

db(z, [Tz]α) ≼ s[db(z, xn+1) + db(xn+1, [Tz]α)]

≼ s[db(z, xn+1) +H([Txn]α, [Tz]α)]

≼ s[db(z, xn+1) + a∗db(xn, z)a] −→ 0A, (n→ ∞).

Therefore, we get db(z, [Tz]α) = 0A and [Tz]α is closed, that is, z ∈ [Tz]α. Thus z is an α-fuzzy fixed point
of T . This completes the proof.

By taking A = R, in Theorem 3.2, we have the following corollary.

Corollary 3.3. Let (X, d) be a complete b-metric space with coefficient s ≥ 1, let T : X → F (X), α : X →
(0, 1] such that [Tx]α is a nonempty closed subsets of X, for all x ∈ X such that

H([Tx]α, [Ty]α) ≤ kd(x, y),

for all x, y ∈ X, where 0 < k < 1. Assume that k <
1

s
, then T has an α-fuzzy fixed point.

Corollary 3.4. Let (X, d) be a complete b-metric space with coefficient s ≥ 1, let T : X → F (X), α : X →
(0, 1] such that [Tx]α is a nonempty closed subsets of X, for all x ∈ X and ψ ∈ Ψb, such that

H([Tx]α, [Ty]α) ≤ ψ(d(x, y)),

for all x, y ∈ X. Assume that k <
1

s
, then T has an α-fuzzy fixed point.

Next, we give some examples to support the validity of Theorem 3.2.

Example 3.5. Let X = [0, 3] and define a C∗-algebra-valued b-metric db on X
2 → A by db(x, y) = |x−y|2I

for all x, y ∈ X. Then (X,A, db) is a complete C∗-algebra-valued b-metric space with coefficient s = 2, but
(X,A, db) is not a C∗-algebra-valued metric space. Define a fuzzy mapping T : X → F (X) by

(Tx)(t) =


0, if t ∈ [0, 34),
3

4
, if t ∈ [34 , 2],

1

t+ 1
, if t ∈ (2, 3].

Let α = 3
4 , now we get

[Tx] 3
4
= [

3

4
, 1].

Note that, for x, y ∈ X, we have

H([Tx] 3
4
, [Ty] 3

4
) =

9

16
|x− y|2I =

3

4
|x− y|2I 3

4
=

3

4
db(x, y)

3

4
,

where ∥ a ∥= 3
4 ∈ (0, 1).

Thus, all the conditions of Theorem 3.2 are satisfied. We have x = 3
4 ∈ X := [0, 2] is an α-fuzzy fixed

point of T . Indeed, for x = 3
4 , we have xα ⊂ [Tx]α as (T 3

4)(
3
4) ≥

3
4 , that is, 3

4 ∈ [T 3
4 ] 34

. Thus x = 3
4 is a

(34)-fuzzy fixed point of T .
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Figure 1: (Tx)(t)
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