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2 New Common Coupled Coincidence Point Theorems for Generalized Weakly . . . : P. Sumalai et al.

1. Introduction and Preliminaries

The study of common and coupled fixed points of mappings satisfying certain contractive
conditions has been at the center of rigorous research activity [2, 24, 27]. In 2006, Mustafa
and Sims [28] have generalized and studied the concept of a generalized metric space. Based
on the notion of generalized metric spaces, Mustafa et al. [29] obtained some fixed point
theorems for mappings satisfying different contractive conditions. Abbas and Rhoades [1]
initiated the study of a common fixed point theorem in generalized metric spaces. Recently,
Shatanawi [32], Sintunavarat and Kumam [19,32,35] generalized coupled fixed point theorems,
coupled coincidence and coupled common fixed point theorems for weak contraction mappings in
partially ordered metric spaces. The pivotal result of analysis on Banach principle contraction.
Its significance lies in its vast applicability in a great number of branches of mathematics and
other sciences.

Bhashkar and Lakshmikantham [19] introduced the concept of a coupled fixed point of a
mapping F : X × X → X (a nonempty set) and established some coupled fixed point theorems in
partially ordered complete metric spaces. Later, Lakshmikantham and Ćirić [25] proved coupled
coincidence and coupled common fixed point results for nonlinear mappings F : X × X → X and
g : X × X satisfying certain contractive conditions in partially ordered complete metric spaces.
In 2010, Abbas et al. [3] proved coupled coincidence and coupled common fixed point results in
cone metric spaces for w-compatible mappings.

The aim of this paper is to prove coupled coincidence point and coupled common fixed
points results for generalized weakly mappings. Consider a nonempty S and by B(S) we denote
the set of all bounded real functions defined on S and generalizations of the above principle
have been objects in a lot of papers appearing in the literature. Particularly, one of these
generalizations is due to Rhoades [30] and uses weakly contractive mappings. Before presenting
the definition of this class of mappings, we introduce the class A of functions ϕ :R+ →R+ which
are nondecreasing such that ϕ(t)= 0 if and only if t = 0.

Definition 1.1. Let (X ,d) be a metric space and let T : X → X be a mapping. We say that T is
weakly contractive if, for any x, y ∈ X

d(Tx,T y)≤ d(x, y)−ϕ(d(x, y)), (1)

where ϕ ∈A .

The following fixed point theorem which appeared in [30] will be a crucial tool in our study.

Theorem 1.2. If T : X → X is a weakly contractive mapping, where (X ,d) is a complete metric
space, then T has a unique fixed point.

Introducing a new generalization of contraction principle, Dutta and Choudhury [22] proved
the following theorem.

Communications in Mathematics and Applications, Vol. 9, No. 1, pp. 1–14, 2018



New Common Coupled Coincidence Point Theorems for Generalized Weakly . . . : P. Sumalai et al. 3

Theorem 1.3 ([22]). Let (X ,d) be a complete metric space and let T : X → X be a self-mapping
satisfying the inequality

ψ(d(Tx,T y))≤ψ(d(x, y))−ϕ(d(x, y)), (2)

where ψ,ϕ : [0,∞) → [0,∞) are both continuous and monotone nondecreasing functions with
ψ(t)=ϕ(t)= 0 if and only if t = 0. Then T has a unique fixed point.

Definition 1.4. A point x in X is a coincidence point (common fixed point) of f and T if
f (x)= T(x)( f (x)= T(x)= x).

Definition 1.5. Let f , g be two compatible mappings on X . If f (x)= g(x) for some x in X , then
f g(x)= gf (x).

Theorem 1.6. Let (X ,d) be a metric space and let T be a weakly contractive mapping with
respect to f . If the range of f contains the range of T and f (X ) is a complete subspace of X , then
f and T have coincidence point in X .

Lemma 1.7. Let f , g be two compatible mappings on X . If f (x) = g(x) for some x in X , then
f g(x)= gf (x).

Beg and Abbas [15] proved the coincidence point result for two mappings which generalized
weak contraction condition. They obtained common fixed point theorem for a pair of weakly
compatible maps.

Definition 1.8. The mappings F : X × X → X and g : X × X are called w-compatible if
g(F(x, y))= F(gx, gy) whenever g(x)= F(x, y) and g(y)= F(y, x).

Definition 1.9 ([15]). Let X be a metric space. A mapping T : X → X is called weakly contractive
with respect to f : X → X if for each x, y ∈ X

d(Tx,T y)≤ d( f x, f y)−ϕ(d( f x, f y)), (3)

where ϕ : [0,∞)→ [0,∞) is continuous and nondecreasing such that ϕ is positive on (0,∞),ϕ(0)=
0 and limt→∞ϕ(t)=∞.

Lemma 1.10 ([23]). Let X be a nonempty set and g : X → X be a mapping. Then, there exists a
subset E ⊆ X such that g(E)= g(X ) and g : E → X is one-to-one.

Theorem 1.11. Let (X ,d) be a complete metric space and let T : X → X be a mapping satisfying
d(T(x, y),T(u,v)) ≤ ϕ(d( f x, f u)), for any x, y,u,v ∈ X , where ϕ is a comparison function and
T(X ) ⊆ f (X ) and f (X ) is a complete subspace of X , then f and T have a coupled coincidence
point.

Lemma 1.12. Let (X ,d) be a metric space and let T be a weakly contractive mapping with
respect to f . If T and f are weakly compatible and T(X )⊆ f (X ) and f (X ) is a complete subspace
of X , then f and T have common fixed point in X .

Communications in Mathematics and Applications, Vol. 9, No. 1, pp. 1–14, 2018



4 New Common Coupled Coincidence Point Theorems for Generalized Weakly . . . : P. Sumalai et al.

The main purpose of this paper is to introduce the concept of generalized coupled coincidence
points and coupled common fixed points, to prove a result about the existence and uniqueness
of these points and apply the result to a problem which appears in dynamic programming.

2. Main Results

In this section, we consider a nonempty set S and by B(S), we will denote the set of all bounded
real functions defined on S. With respect to the ordinary addition of functions and scalar
multiplication, B(S) is a real vector space on R. In B(S), we consider the classical norm as
follows:

‖h‖ = sup
x∈S

|h(x)| , for h ∈ B(S),

and it is well known that (B(S),‖.‖) is a Banach space.

Notice that the distance in B(S) is given by

d(u,v)= sup{|u(x)−v(x)| : x ∈ S}, for u,v ∈ B(S).

Definition 2.1 ([32]). Let (X ,d) be a nonempty set.

(i) An element (x, y) ∈ X × X is said to be a coupled fixed point of the mapping F : X × X → X
if F(x, y)= x and F(y, x)= y;

(ii) An element (x, y) ∈ X × X is said to be a coupled coincidence fixed point of the mappings
F : X × X → X and g : X → X if F(x, y) = g(x) and F(y, x) = g(y), and (gx, gy) is called
coupled point of coincidence;

(iii) An element (x, y) ∈ X × X is said to be a coupled common fixed point of the mappings
F : X × X → X and g : X → X if F(x, y)= g(x)= x and F(y, x)= g(y)= y;

(iv) The mappings F : X × X → X and g : X → X are called w-compatible if g(F(x, y)) =
F(gx, gy), whenever g(x)= F(x, y) and g(y)= F(y, x).

Note that if (x, y) is a coupled common fixed point of F then (y, x) is coupled common fixed point
of F too.

Next, we define the new concept in the following:

Definition 2.2. Suppose that F : B(S)×B(S)→ B(S) and g,α : B(S)→ B(S) are two mappings.
An element (u,v) ∈ B(S)×B(S) is called an α-coupled coincidence point of F and g if F(u,v)= g(u)
and F(α(u),α(v))= g(α(v)) (and F(v,u)= g(v) and F(α(v),α(u))= g(α(u))).

Definition 2.3. Suppose that F : B(S)×B(S)→ B(S) and g,α : B(S)→ B(S) are two mappings.
An element (u,v) ∈ B(S)×B(S) is called an α-common coupled coincidence point of F and g
if F(u,v) = g(u) = u and F(α(u),α(v)) = g(α(v)) = v (and F(v,u) = g(v) = v and F(α(v),α(u)) =
g(α(u))= u).
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New Common Coupled Coincidence Point Theorems for Generalized Weakly . . . : P. Sumalai et al. 5

Before presenting our main result, we need to introduce the class of functions B given by
those functions ϕ :R+ →R+ which are nondecreasing and such that I −ϕ ∈A , where I denotes
the identity mapping on R+ and A is the class of functions introduced in Definition 1.7.

We are ready to present the main result of the paper which gives us a sufficient condition
for the existence and uniqueness of an α-coupled fixed point.

2.1 Coupled Coincidence Point Result

Theorem 2.4. Suppose that F : B(S)×B(S) → B(S) and α, g : B(S) → B(S) are non-expansive
mappings. Assume that F satisfies

d(F(x, y),F(u,v))≤ϕ(max(d(gx, gu),d(gy, gv))), (4)

for any x, y,u,v ∈ B(S), where ϕ ∈B. and assume that F, g are weakly compatible Then F has
an α-coupled coincidence point.

Proof. Consider the cartesian product B(S)×B(S) endowed with the distance

d((x, y), (u,v))=max(d(x,u),d(y,v)), (5)

for any (x, y), (u,v) ∈ B(S)×B(S). It is known that (B(S)×B(S),d) is a complete metric space.

Now, we consider the mapping F : B(S)×B(S)→ B(S)×B(S) defined by

F(x, y)= (F(x, y),F(α(x),α(y))), (6)

where α : B(S)→ B(S).

Next, we check that F satisfies assumptions of Theorem 1.2, i.e., F is a weakly contractive
mapping (eq.(3)) on B(S)×B(S).

In fact, taking into account our assumption, for any x, y,u,v ∈ B(S), we have

d(F(x, y),F(u,v))= d(F(x, y),F(α(x),α(y)), (F(u,v),F(α(u),α(v)))) (by (6))

=max(d(F(x, y),F(u,v)),d(F(α(x),α(y)),F(α(u),α(v)))) (by (5))

≤max(ϕ(max(d(gx, gu),d(gy, gv))),

ϕ(max(d(g(α(x)), g(α(u))),d(g(α(y)), g(α(v)))))) (by (4)).

Since the mapping α, g are both non-expansive with

max(d(g(α(x)), g(α(u))),d(g(α(y)), g(α(v))))≤max(d(gx, gu),d(gy, gv))

≤max(d(x,u),d(y,v)),

and since ϕ is nondecreasing, we infer

d(F(x, y),F(u,v))≤ (ϕ(max(d(gx, gu),d(gy, gv))))

=max(d(gx, gu),d(gy, gv))− (max(d(gx, gu),d(gy, gv))

−ϕ(max(d(gx, gu),d(gy, gv)))).
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6 New Common Coupled Coincidence Point Theorems for Generalized Weakly . . . : P. Sumalai et al.

Now, taking into account that ϕ ∈B and, consequently, I −ϕ ∈A , from the last expression
we obtain that F is a weakly contractive mapping with respect to g. By using Lemma 1.10
and Theorem 1.11, there exists (x0, y0) ∈ B(S)×B(S) such that F(x0, y0)= (g(x0), g(y0))= (x0, y0).
Since

F(x0, y0)= (g(x0), g(y0)) := (F(x0, y0),F(α(x0),α(y0)).

This, imply that

g(x0)= F(x0, y0) and g(y0)= F(α(x0),α(y0)).

Therefore F has an α-coupled coincidence point. This completes the proof.

2.2 Common Coupled Coincidence Point Result

Theorem 2.5. Suppose that F : B(S)×B(S) → B(S) and α, g : B(S) → B(S) are non-expansive
mappings. Assume that F satisfies

d(F(x, y),F(α(u),α(v))≤ϕ(max(d(gx, gu),d(gy, gv))),

for any x, y,u,v ∈ B(S), where ϕ ∈B, and F, g are weakly compatible and F(B(S),B(S))⊆ g(B(S))
and g(B(S)) is a complete subspace of B(S). Then F has an α-common coupled coincidence point.

Proof. By Theorem 2.4, Lemma 1.12 and w-compatible, then g and F have a coupled common
fixed point, this means that

F(x0, y0)= g(x0)= x0 ,

F(α(x0),α(y0))= g(y0)= y0 .

Again, by Lemma 1.8, we have (x0, y0) ∈ B(S) and define

(g(x0), g(y0)) := F(x0, y0)

such that

F(x0, y0)= (g(x0), g(y0))= (x̂0, ŷ0) (say) for some (x̂0, ŷ0) ∈ B(S)×B(S).

By w-compatible, we get

g(F(x0, y0))= F(g(x0), g(y0)),

where

g(y0)= F(x0, y0) ,

g(x0)= F(x0, y0) ,

g(x̂0, ŷ0)= F(x̂0, ŷ0) .

We need to show that

g(x̂0, ŷ0)= (x̂0, ŷ0).

Assume that g(x̂0, ŷ0) 6= (x̂0, ŷ0).
Then, we observe that

d(g(x̂0, ŷ0), (x̂0, ŷ0))= d(F(x̂0, ŷ0), (x̂0, ŷ0)).
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Since F is weakly contractive with respect to g, we compute

d(g(x̂0, ŷ0), (x̂0, ŷ0))= d(g(x̂0, ŷ0), g(x0, y0))−ϕ(d(g(x̂0, ŷ0), g(x0, y0)))

< d(g(x̂0, ŷ0), g(x0, y0))−ϕ(d(g(x̂0, ŷ0), g(x0, y0)))

≤ d(g(x̂0, ŷ0), g(x0, y0))

= d(g(x̂0, ŷ0), (x0, y0)).

So, we obtain

d(g(x̂0, ŷ0), (x̂0, ŷ0))< d(g(x̂0, ŷ0), (x̂0, ŷ0))

which is a contradiction to the assumption. Therefore,

g(x̂0, ŷ0)= (x̂0, ŷ0).

That is

F(x̂0, ŷ0)= g(x̂0, ŷ0)= (x̂0, ŷ0).

Since

F(x̂0, ŷ0) := (g(x̂0), g( ŷ0)) := (F(x̂0, ŷ0),F(α(x̂0),α( ŷ0))

and

F(x̂0, ŷ0) := (g(x̂0), g( ŷ0))= (x̂0, ŷ0) := (F(x̂0, ŷ0),F(α(x̂0),α( ŷ0)),

we obtain that

(x̂0)= g(x̂0)= F(x̂0, ŷ0) and ( ŷ0) = g( ŷ0)= F(α(x̂0),α( ŷ0)).

Since F is a weakly contractive mapping with respect to g, then, there exists (x0, y0) ∈ B(S)×B(S)
such that F(x0, y0)= (x0, y0). This means that F(x0, y0)= g(x0)= x0 and F(α(x̂0),α( ŷ0))= g(y0)=
y0 and therefore, (x0, y0) is a α-common coupled coincidence point of F . This completes the
proof.

2.3 Uniqueness

Theorem 2.6. Suppose that F : B(S)×B(S)→ B(S) with respect to g : B(S)→ B(S), F is a weakly
contractive mapping with respect to g and w-compatible, where (B(S),d) is a complete metric
space. Then F and g have a unique coupled common fixed point.

Proof. By using [34, Theorem 2.2], we can conclude that F and g have a coupled coincidence
point (x, y). Moreover, if (x0, y0) is another coupled coincidence point of F and g, then

g(x)= g(x0) and g(y)= g(y0). (7)

As F and g are w-compatible

g(g(x))= g(F(x, y))= F(g(x), g(y)) and g(g(y))= g(F(y, x))= F(g(y), g(x)). (8)

Denote g(x)= a and g(y)= b. Then, from (8), we have

g(a)= F(a,b) and g(b)= F(b,a) (9)
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which implies that (a,b) is a coupled coincidence point of F and g. From (7), we have g(a)= g(x)
and g(b)= g(y) that is

g(a)= a and g(b)= b. (10)

By (9) and (10), we have

a = g(a)= F(a,b) and b = g(b)= F(b,a). (11)

Therefore (a,b) is a coupled common fixed point of F and g.

To prove the uniqueness, assume that (c,d) is another coupled common fixed point of F and
g and then (c,d) is also coupled coincidence point of F and g. From (7), we get c = g(c)= g(a)= a
and d = g(d)= g(b)= b. Therefore (a,b) is a unique coupled common fixed point of F and g.

3. Some Applications to Dynamic Programming

3.1 Coupled Coincidence Point for a System in Dynamic Programming

The following types of systems of functional equations
f (u(x))= sup

y∈D

{
g(x, y)+F(x, y,u(T(x, y)),v(T(x, y))

}
f (v(x))= sup

y∈D

{
g(x, y)+F(x, y,u(α(T(x, y))),v(α(T(x, y))))

} (12)

appear in the study of dynamic programming (see [5]), where x ∈ S and S is a state space,
D is a decision space, T : S × D → S, g : S × D → R,α : B(S) → B(S), f : B(S) → B(S) and
F : S×D×R×R→R are given mappings.

For further information about the functional equations appearing in dynamic programming,
we refer the reader to [16,18,21].

The following result gives us a sufficient condition for the existence and uniqueness of
solutions to problem (12).

Theorem 3.1. Suppose the following assumptions hold:

(i) g : S×D → R and F(−,−,0,0) : S×D → R are bounded functions and α : B(S) → B(S) is
non-expansive.

(ii) There exists a function ϕ ∈ B such that, for any x ∈ S, y ∈ D and t, s, t1, s1 ∈R one has the
inequality,

|F(x, y, t, s)−F(x, y, t1, s1)| ≤ϕ(max(|t− t1| , |s− s1|)).
Then, problem (12) has a unique solution (u0,v0) ∈ B(S)×B(S).

For the proof of Theorem 3.1, we need the following lemma.

Lemma 3.2. Suppose that H,G : S →R are two bounded functions. Then∣∣∣sup
y∈S

H(y)−sup
y∈S

G(y)
∣∣∣≤ sup

y∈S
|H(y)−G(y)| .
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Proof. It is clear that the result is true when sup
y∈S

{H(y)}= sup
y∈S

{G(y)}.

Suppose that sup
y∈S

{H(y)}> sup
y∈S

{G(y)} (same argument works under the assumption sup
y∈S

{H(y)}<
sup
y∈S

{G(y)}).

For any y0 ∈ S, we have

H(y0)−sup
y∈S

{G(y)}≤ H(y0)−G(y0)≤ |H(y0)−G(y0)|

and, therefore,

sup
y∈S

{H(y)−sup
y∈S

{G(y)}}≤ sup
y∈S

{|H(y)−G(y)|}.

Since supy∈S{H(y)−a}= supy∈S{H(y)}−a, for any a ∈R, it follows

sup
y∈S

{H(y)}−sup
y∈S

{G(y)}≤ sup
y∈S

{|H(y)−G(y)|}

and this proves our claim.

Proof of Theorem 3.1. Consider the operator G defined on B(S)×B(S) by

G(u,v)(x)= sup
y∈D

{g(x, y)+F(x, y,u(T(x, y)),v(T(x, y)))}

for any u,v ∈ B(S) and x ∈ S.

Taking into account our assumptions, we get

|G(u,v)(x)| ≤ sup
y∈D

|g(x, y)+F(x, y,u(T(x, y)),v(T(x, y)))|

≤ sup
y∈D

|g(x, y)|+sup
y∈D

|F(x, y,u(T(x, y)),v(T(x, y)))|

≤ sup
y∈D

|g(x, y)|+sup
y∈D

{|F(x, y,u(T(x, y)),v(T(x, y)))−F(x, y,0,0)|+ |F(x, y,0,0)|}

≤ sup
y∈D

|g(x, y)|+sup
y∈D

{ϕ(max(|u(T(x, y))| , |v(T(x, y))|)}+sup
y∈D

{|F(x, y,0,0|}

≤ sup
y∈D

|g(x, y)|+sup
y∈D

{ϕ(max(‖u‖,‖v‖)}+sup
y∈D

{|F(x, y,0,0)|}<∞.

Therefore, G : B(S)×B(S)→ B(S).

Now, we check that G satisfies assumptions of Theorem 2.4.

In fact, for any u,v,u1,v1 ∈ B(S), we have

d(G(u,v),G(u1,v1))= sup
x∈S

|G(u,v)(x)−G(u1,v1)(x)|

= sup
x∈S

|sup
y∈D

{g(x, y)+F(x, y,u(T(x, y)),v(T(x, y)))}

−sup
y∈D

{g(x, y)+F(x, y,u1(T(x, y)),v1(T(x, y)))}|

≤ sup
x∈S

{sup
y∈D

‖F(x, y,u(T(x, y)),v(T(x, y)))−F(x, y,u1(T(x, y)),v1(T(x, y)))‖}
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≤ sup
x∈S

{sup
y∈D

{ϕ(max{|u(T(x, y))−u1(T(x, y))| , |v(T(x, y))−v1(T(x, y))|})}}

≤ sup
x∈S

{ϕ(max(‖u−u1‖,‖v−v1‖))}

≤ϕ(max(d(u,u1),d(v,v1))).

where we have used assumption (ii), Lemma 3.2 and the fact that ϕ is a nondecreasing function.

Therefore, the contractive condition appearing in Theorem 2.4 is satisfied and, since α is non-
expansive, Theorem 2.4 gives us the existence and uniqueness of a α-coupled coincidence point
for the mapping G, namely, there exists a unique (u0,v0) ∈ B(S)×B(S) such that G(u0,v0)= f (u0)
and G(α(u0),α(v0))= f (v0).

This means that, for any x ∈ S,

f (u0(x))= sup
y∈D

{g(x, y)+F(x, y,u0(T(x, y)),v0(T(x, y)))},

f (v0(x))= sup
y∈D

{g(x, y)+F(x, y,u0(α(T(x, y))),v0(α(T(x, y))))}.

Therefore, we obtain the desired result.

3.2 Existence and Uniqueness of Common Solution of System of Functional Equation
in Dynamic Programming

We aim to give the existence and uniqueness of common and bounded solution of functional
equations from problem (12).

Suppose that the following conditions hold:

(C1) G and g are bounded,

(C2) For x ∈ S,h ∈ B(S) and b > 0, define,

Kh(x)= sup
y∈D

{g(x, y)+G(x, y,h(T(x, y)),k(T(x, y))), (13)

Jk(x)= sup
y∈D

{g(x, y)+G(x, y,h(α(T(x, y))),k(α(T(x, y)))), (14)

where J,K are self-maps of B(S).
Moreover assume that there exists a comparison function ϕ such that for every (x, y) ∈
S×D,h,k ∈ B(S) and t ∈ S we have

|F(x, y,h(t),k(t))−F(x, y,h1(t),k1(t))| ≤ϕ(max(|h(t)−h1(t)| , |k(t)−k1(t)|)), (15)

and

|F(x, y,αh(t),αk(t))−F(x, y,αh1(t),αk1(t))|≤ϕ(max(|αh(t)−αh1(t)| , |αk(t)−αk1(t)|)). (16)

(C3) For any h ∈ B(S), there exists k ∈ B(S) such that for x ∈ S,

Kh(x)= Jk(x).

(C4) There exists h ∈ B(S) such that

Kh(x)= Jh(x) implies that JKh(x)= K Jh(x).
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Theorem 3.3. Assume that the conditions (C1)-(C4) are satisfied. If J(B(S)) is a closed convex
subspace of B(S), then the functional equations (12) have a unique, common and bounded
solution.

Proof. Note that (B(S),d) is a complete metric space. By (C1), J , K are self-maps of B(S). The
condition (C3) implies that K(B(S))⊆ J(B(S)). It follows from (C4) that J and K commute at
their coincidence points. Let h1,h2,k1,k2 ∈ B(S). Choose x ∈ S and y1, y2 ∈ D such that

Kh j < g(x, yj)+F(x, yj,h j(x j),k(x j)) (17)

and

Jk j < g(x, yj)+F(x, yj,αh j(x j),αk(x j)), (18)

where x j = T(x, yj), j = 1,2.

Further from (13) and (14), we have

Kh1 ≤ g(x, y2)+F(x, y2,h1(x2),k1(x2)), (19)

Kh2 ≤ g(x, y1)+F(x, y1,h2(x1),k2(x1)). (20)

and

Jk1 ≤ g(x, y2)+F(x, y2,αh1(x2),αk1(x2)), (21)

Jk2 ≤ g(x, y1)+F(x, y1,αh2(x1),αk2(x1)). (22)

From (17) and (19) together with (15) it follows

Kh1(x)−Kh2(x)< F(x, y1,h1(x1))−F(x, y1,h2(x2))

≤ |F(x, y1,h1(x1))−F(x, y1,h2(x2))|
≤ϕ(max(|h(t)−h1(t1)| , |k(t)−k1(t1)|)). (23)

By (17) and (20) together with (15), we have

Kh2(x)−Kh1(x)< F(x, y1,h2(x2))−F(x, y1,h1(x1))

≤ |F(x, y1,h1(x1))−F(x, y1,h2(x2))|
≤ϕ(max(|h(t)−h1(t1)| , |k(t)−k1(t1)|)) (24)

and then (18) and (21) together with (15) imply

Kh1(x)−Kh2(x)< F(x, y1,h1(x1))−F(x, y1,h2(x2))

≤ |F(x, y1,h1(x1))−F(x, y1,h2(x2))|
≤ϕ(max(|h1(t1)−h2(t2)| , |k1(t1)−k2(t2)|)). (25)

By using the same arguments of Jk j < g(x, yj)+F(x, yj,αh j(x j),αk(x j)), and from (18) (21) and
(22), we get

Jk1(x)− Jk2(x)≤ϕ(max(|αh(t)−αh1(t1)| , |αk(t)−αk1(t1)|)), (26)

Jk2(x)− Jk1(x)≤ϕ(max(|αh1(t1)−αh2(t2)| , |αk1(t1)−αk2(t2)|)). (27)
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From (24) and (25), we have

|Kh1(x)−Kh2(x)| ≤ϕ(max(|h(t)−h1(t1)| , |k(t)−k1(t1)|)) (28)

and

|Jk1(x)− Jk2(x)| ≤ϕ(max(|αh(t)−αh1(t1)| , |αk(t)−αk1(t1)|)). (29)

The inequality (28) and (29), we obtain

|Kh1(x)−Kh2(x)| ≤ϕ(max(|h(t)−h1(t1)| , |k(t)−k1(t1)|)),
d(Kh1(x),Kh2(x))≤ϕ(max(d(h(t),h1(t1))),d(k(t),k1(t1))) (30)

and

|Jk1(x)− Jk2(x)| ≤ϕ(max(|αh(t)−αh1(t1)| , |αk(t)−αk1(t1)|)),
d(Jk1(x), Jk2(x))≤ϕ(max(d(αh(t),αh1(t1))),d(αk(t),αk1(t1))). (31)

Therefore, by condition (C2) the pair (K , J) has common fixed point of h and k, that is h(x) is
unique, bounded and common solution of equation (12)

4. Conclusions

In this paper, we studied and defied a new concept of generalized weakly contraction mapping
for coupled common fixed points in the space of the bounded function. We also obtained the
existence and uniqueness common coupled fixed point theorems. Moreover, as an application of
our result, we also studied the problem of existence and uniqueness of solutions for a class of
system of functional equations which appears in dynamic programming.
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