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ABSTRACT 
 A finite difference is widely used for solving numerical solution of differential equations. 

Some restriction of traditional finite difference affect to increasing an error of numerical solution. 

This paper presents a hybrid finite difference, upwind scheme and central finite difference for solving 

ordinary differential equations and partial differential equations which could have stability more than 

the traditional method. We found that the numerical solution by hybrid scheme get rid of maximum 

error more than central finite difference method and level of gamma parameter lead to decreasing of  

root mean square error. 

 
INTRODUCTION 

  
 The finite difference method is used for 

solving ordinary differential equations and partial 

differential equations. Approximation of  

d(f(x))/dx is defined by forward difference 

approximation (FDA), backward difference 

approximation (BDA) or central difference 

approximation (CDA) in finite difference. The  

differentiable function of x can be expanded in a 

Taylor series about x. The idea of finite difference 

extend to a function of two variables for partial 

differential equation. BDA,FDA and CDA are 

replaced by ux, uy [1]. 

 The upwind scheme is combination of 

backward finite difference and forward finite 

difference. The hybrid scheme is blended between 

upwind scheme and central finite difference. 

Configuration of gamma parameter  will affect to 

level of upwind scheme and central finite 

difference in hybrid scheme. The upwind scheme 

is modified for convective-diffusion equations. A 

second order upwind scheme is applied for 

multidimensional magnetohydrodynamics in 1998 

[2]. The Linear hyperbolic systems are discrete by 

second order upwind method [3]. The upwind 

scheme is represented to first order derivative and 

central finite difference is applied to second order 

derivative for change to elliptic problem [4]. The 

upwind compact scheme is solved with the Euler 

equation for the incompressible flow [5]. The 

OUCS2 upwind compact scheme is applied to 

calculation of first derivative in the Euler and 

Navier-Stokes equations [6]. Semi-Discrete 

Central scheme is constructed and analyzed by the 

total variation(TV) of approximation solution [7]. 

Central difference, upwind and hybrid scheme are 

solved in different grid system for general 

transport equation [8]. Triangular discretization of 

the domain is purposed with central upwind 

scheme for variable density shallow water flow 

equations [9]. The well-balanced positivity 

preserving second-order “triangular” central-

upwind scheme is improved for the two-

dimensional Saint-Venant system of shallow water 

equation [10].   

 

 In this paper, we propose a hybrid scheme 

for solving ordinary differential equations and 

partial differential equations. Numerical solutions 

are compared with analytic solutions in the 

different gamma parameter.  

 
MATERIALS AND METHODS 

 

 This research use hybrid method for first 

derivative and central finite difference for second 

derivative. Blending of upwind scheme and central 

finite difference depend on gamma parameter. 

Configuration of gamma parameter in hybrid 

method is set as 0.1,0.5 and 0.9 respectively. 

Maximum norm and root mean square error 

(RMSE) are purposed for comparison numerical 

solution. 

2.1 Ordinary differential equation. 

  

 We consider the ordinary differential 

equation as following 
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The Eq.(1) is demonstrated for comparision 

numerical solution between the central finite 

difference method and hybrid upwind scheme. 

 

2.1.1 Central finite difference method for ODE 

 The Eq.(1) is discreted by central finite 

difference method as following  
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Eq.(4) can be written in the matrix form as 

following 
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 We rearrange (5) yields the following 

result Matrix U is solved by computer 

programming. 

 

2.1.2 Hybrid upwind scheme for ODE 

 The Eq.(1) is discreted by hybrid upwind 

scheme as following      
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 Eq.(6) can be substitued by Eq.(7)-(8), the 

result as following  
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 Eq.(9) can be written in the matrix form as 

following  
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 2.2 Partial differential equation.  

 
 

 We consider the partial differential 

equation as following 

   

 (10)  

  
Boundary condition is

  

Initial condition is

   
Analytic solution is  

 

 

 

 

 

where  

 

 

The analytic solution is an infinite series as 

 

 

 

 

 

 
 

2.2.1 Central finite difference method for PDE 

 The Eq.(10) is discreted by central finite 

difference method as following  
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Eq.(10) can be substitued by Eq.(11)-(12), the 

result as following 
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 We substitute L,C and R in the matrix form 

for solving numerical solution. 

 

2.2.2 Hybrid upwind scheme for PDE 

 The Eq.(10) is discreted by hybrid upwind 

scheme as following  
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      Eq.(10) can be substitued by Eq.(14)-(15), 

the result as following  
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 We substitute L,C and R in the matrix form 

for solving numerical solution. 
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RESULTS AND DISCUSSION  

 
 This research will compare numerical 

solution of differential equation with central finite 

differential, hybrid upwind scheme and analytic 

solution.  

Accuracy is measured in the discrete maximum 

norm and root mean square error (RMSE). The 

discrete maximum norm and maximum of root 

mean square error was given in Table 1-Table 3. 

that is estimated for difference gamma in hybrid 

scheme. The analytical and numerical solution 

profiles are given in Fig. 1- Fig. 11.  
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differential equation and iu  is the analytic solution 
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Figure 1. Numerical solutions with parameter 

0.1   of  hybrid method.  

 

     
Figure 2. Numerical solutions with parameter 

0.5   of  hybrid method.  

 
Table 1. The numerical solutions by difference 

gamma in Example 1. 

 

Method Central   Hybrid     

 Error a  0.1   0.5    

MaxNorm 0.435309 

 
0.340071 

 

0.059370 

 

RMSE  0.151922 

 

0.113810 

 

0.018794 

 

    

 
Example 2. We consider the ordinary differential 

equation 
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Figure 3. Numerical solutions with parameter 

0.1   of  hybrid method.  
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Figure 4. Numerical solutions with parameter 

0.5   of  hybrid method.  

     
Figure 5. Numerical solutions with parameter 

0.9   of  hybrid method.  

 
Table 2. The numerical solutions by difference 

gamma in Example 2. 

 

Method Central      Hybrid  

 Error a  0.1   0.5   0.9    

MaxNorm 1.978637 

 

1.594305 

 

0.513291 

 

0.155889 

 

RMSE  0.842973 

 

0.601025 

 

0.165887 

 

0.050337 

 

 

 
Example 3. We consider the partial differential 

equation
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Figure 6. Numerical solutions with parameter 

0.5   of  hybrid method.  

     
Figure 7. Numerical solutions with parameter 

0.9   of  hybrid method.  

     
 
Figure 8. Numerical solutions with parameter 

5   of  hybrid method.     0, 3, 1, 5 , 0.u t u t t  

  2,0 1 ,0 1.u x x x   



 

 

 
 
Figure 9. Numerical solutions with parameter 

10   of  hybrid method.  

 
Figure 10. Numerical solutions with parameter 

15   of  hybrid method.  

 

Table 3. The numerical solutions by  difference  

gamma in Example 3. 

 

Method Central      Hybrid  

 Error a  0.1   0.5   0.9    

MaxNorm 0.410521 

 

0.379110 

 

0.182407 

 

0.064411 

 

RMSE  0.286993 

 

0.264867 

 

0.126159 

 

0.024845 

 

 
CONCLUSIONS 

 

 The hybrid scheme has maximum norm 

and root mean square error less than central finite 

difference method in addition to the most of 

maximum gamma will have lower error for same 

hybrid scheme. Increasing of gamma parameter in 

partial differential equation will decrease 

maximum norm and root mean square error. 

Moreover, convergence rate will correspond with 

gamma parameter in hybrid scheme.  
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