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ABSTRACT 

 A fractional calculus is an excellent tool for 

solving problems in many researches. This paper 

presents a fractional calculus for solving differential 

equations in the problem of radioactive decay. The 

method for solving problem is inverse Laplace 

transform of fractional calculus that concerns with 

Riemann-Liouville fractional derivative, Riemann-

Liouville fractional Integral, Mittag Leffler function 

and Gamma function. The numerical solution of 

fractional calculus will give the value of 

radioactivity less than the traditional calculus. 

 

INTRODUCTION 

The first idea of fractional calculus is 

considered to be the Leibniz’s letter to 

L’Hospital in 1965 about derivative with non-

integer. The Fractional calculus is a name for 

the theory of derivatives and integrals of 

arbitrary order. The definition of derivative is 

described by Euler in 1730 and Laplace in 

1812. Lacroix is the French mathematics who 

presented a derivative of non-integer in term of 

Legendre’s symbol  . Lacroix expresses 
thn derivative of function  my x  as follows   [1] 
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The first application of fractional calculus is 

concerned with solution of the integral equation 

to the tautochronous problem that presented by 

Abel in 1823[2]. He founded that the solution 

of this problem could be formed as a semi-

derivative. Liouville was the major study of 

many mathematicians defined and developed 

the formula of fractional integral and fractional 

derivative. Riemann derived different definition 

that concerned a definite integral by adding the 

complementary function in 1853. Caputo found 

that the value of certain fractional integrals and 

derivative need to be specified at the initial time 

for the solution of fractional differential 

equation and solved some problems of 

viscoelasticity in 1967 [3]. Nowadays, the 

definition of the Riemann-Liouville has been 

popularized in the world of fractional calculus. 

Fractional differential equation have attracted 

much attention during the past few decade. This 

is the fact that fractional calculus supply an 

competent and excellent tool for the description 

of many important phenomena such as 

electromagnetic, physics, chemistry, biology, 

economy and many more. 

Fractional calculus is used to describe about 

ultrasonic wave propagation in human 

cancellous bone [4], speech signal modeling 

[5], cardiac tissue electrode interface [6], path-

tracking problem in an autonomous electric 

vehicle [7], theory of viscoelasticity [8], 

diffusion fluid mechanics problem [9], edge 

detection of image processing [10], RLC 

electrical circuit [11], relaxation and oscillation 

equation [12], mortgage problem in financial 
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business [13] and Black-Scholes equation for 

option pricing [14]. 

 

In this paper, we propose a fractional calculus for 

solving differential equations in the problem of 

radioactive decay by using the inverse Laplace 

transform of fractional calculus. 

 

MATERIALS AND METHODS 

The formula of inverse Laplace transform is 

solved with Riemann-Liouville fractional 

derivative, Riemann-Liouville fractional 

Integral and Mittag-Leffler function meanwhile 

Mittag-Leffler function is derived from Gamma 

function and related with Error function. 

2.1The Gamma function is a generalization the 

fractional of the factorial function, denoted by  
 . x  

   1

0

, .



    
x tx t e dt x

  

 
2.2 The Error function is given by  
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The Complementary error function (erfc) can 

be written in form of the Error function as: 

 
   1 . er fc x er f x  

 

2.3 The Mittag Leffler function is a major 

function in fractional calculus was defined by 

Mittag-Leffler in 1903. The Mittag Leffler 

function can be defined in term of a power 

series as follow : 
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The two parameter   and  are defined in the  

Mittag Leffler function as follow: 
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The example of the Mittag Leffler function 

such as : 
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2.4 The Riemann-Liouville fractional Integral 

of function f(x) of order    as: 
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We can solve the Riemann-Liouville fractional 

Integral as: 
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Suppose the functions are selected by 

transcendental functions such as     atf t e  that 

fractional Integral as: 
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2.5 The Riemann-Liouville fractional derivative 

function f(x) of order   will denote by notation 

 c xD f x
, 0 . We often drop subscript c 

and x.  

 

 
      

u nD f x D D f x  

The derivative of function   f x x of order 

, 0  can be changed by setting  u n   where 

0 1. u  
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2.6 The Laplace transform of the fractional 

integral. 

The original Laplace transform of y(t) as 

follows : 
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stY s L y t y t e dt   

  1( ) { }y t L Y s  is the inverse Laplace 

transform of   Y s . 

The Laplace transform of the fractional integral 

of ( )y t  order   is defined as [15], 
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RESULTS AND DISCUSSION  

This research will forecast the residue in the 

future. We simulate data for radioactive decay 

rate at 5 and 10 percent while peroid of time for 

decay are 100 and 300 years. The first time, we 

predict the value of radioactivity by traditional 

calculus. Next step, four examples are purposed 

for comparison the value of radioactivity in 

other situations. The derivative order in original 

calculus is 1 whereas  the fractional derivative 

order are 8 / 9, 2 / 3and 1/ 2 respectively.   

 

Example 1. Suppose that radioactive decay 

rates are proportion with quantity of 

radioactivity at present and decay rate is 10 

percent per 100 years. Scientist would like to 

predict the value of radioactivity in the future.  

 

For first time, we use ordinary differential 

equation and let x is a residue at t year then 

 
dx

kx
dt

, k is constant of proportion. The 

solution by separable variable method is 
 ktx ce , c is constant.  

Let 0x  is initial value then 0c x and 

0

 ktx x e . If decay rate is 10 percent per 100 

years then  
0.01

0.9 , ke  
 0.01

0 0.9
t

x x and 

the percent of residue for next 1000 years is 

34.87%.  

 

In this case, if  a quantity of  residue is one 

fourth of initial value then time for this 

situation will be 1,316 years. 

 

Next step, we use the fractional differential 

equation with same problem and define the 

fractional derivative order are 8 / 9, 2 / 3 and 

1/ 2  respectively. 
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We take fractional inverse Laplace of  Y s then  
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We imply that 
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Figure 1. The comparison numerical solutions  of 

radioactive decay at 10 percent per 100 years by 

fractional differential equation in derivative order 

8 / 9, 2 / 3,1/ 2  with original differential equation 

(order 1).  

 

Example 2. Suppose that radioactive decay rate is 

10 percent per 300 years.  

 

 
Figure 2. The comparison numerical solutions  of 

radioactive decay at 10 percent per 300 years by 

fractional differential equation in derivative order 

8 / 9, 2 / 3,1/ 2  with original differential equation 

(order 1).  

 

Example 3. Suppose that radioactive decay rate is 

5 percent per 100 years.  

 

 
Figure 3. The comparison numerical solutions  of 

radioactive decay at 5 percent per 100 years by 

fractional differential equation in derivative order 

8 / 9, 2 / 3,1/ 2  with original differential equation 

(order 1).  

 

 

 

 

 

 

 



 

 

Example 4. Suppose that radioactive decay is 5 

percent per 300 years.  

 

 
Figure 4. The comparison numerical solutions  of 

radioactive decay at 5 percent per 300 years by 

fractional differential equation in derivative order 

8 / 9, 2 / 3,1/ 2  with original differential equation 

(order 1).  

 

We found that the value of radioactivity for 

fractional derivative order less than integer 

derivative order (order 1) in all cases. In case of 

fractional derivative order, higher order will 

give value of radioactivity more than lower 

order when comparison occur at the same time. 

Data of Table 1. to Table 4. present value of 

radioactivity in details for all cases from 

Example 1 to Example 4. 

 
   Table 1. The numerical solutions of integer        

derivative order for the radioactive decay at 10 

percent per 100 years compare with solution of 

fractional derivative order from 10 to 40 years.  

 

  Order      1     8/9     2/3   1/2 

  Yeara  Residue b   

10 

 

98.95  71.13 33.98 17.71 

20  
 

97.91  65.33 26.86 12.49 

30  96.88  61.97 23.38 

 

10.18 

 

40  95.87  59.61 21.19 8.81 

Table 2. The numerical solutions of integer derivative 

order for the radioactive decay at 10 percent per 300 

years compare with solution of fractional derivative 

order from 10 to 40 years.  

 

Order      1     8/9     2/3   1/2 

 Year a  Residue b   

10 

 

99.65  71.58 34.15 17.78 

20  
 

99.30  66.10 27.07 12.56 

30  98.95  63.03 23.62 

 

10.25 

 

40  98.60  60.92 21.46 8.88 

 

Table 3. The numerical solutions of integer derivative 

order for the radioactive decay at 5 percent per 100 

years compare with solution of fractional derivative 

order from 10 to 40 years.  

 

Order      1     8/9     2/3   1/2 

 Year a  Residue b   

10 

 

99.46  71.48 34.11 17.76 

20  
 

98.98  65.92 27.02 12.54 

30  98.47  62.78 23.56 

 

10.23 

 

40  97.97  60.61 21.40 8.86 

 

Table 4. The numerical solutions of integer derivative 

order for the radioactive decay at 5 percent per 300 

years compare with solution of fractional derivative 

order from 10 to 40 years.  

 

Order      1     8/9     2/3   1/2 

 Year a  Residue b   

10 

 

99.83  71.70 34.20 17.79 

20  
 

99.66  66.30 27.12 12.58 

30  99.49  63.30 23.68 

 

10.27 

 

40  95.32  61.26 21.53 8.90 
aThe unit of year is year.  
b The unit of residue is ton. 
 

 



 

 

CONCLUSIONS 

In this paper, the fractional differential equation 

is solved with the inverse Laplace transform of 

fractional calculus. The value of radioactivity 

by traditional differential equation is compared 

with the fractional differential equation.  

The numerical solutions of every example 

present results for varieties of orders and the 

percentage of radioactive decay. We found that 

the every time has a difference for the value of 

radioactivity in every derivative order. The 

value will be slightly difference between an 

initial time and last time for integer derivative 

order however case of the fractional derivative 

order have more different. The fractional 

derivative order have the value of  radioactivity 

less than integer derivative order (order 1) 

while the higher order of fractional calculus 

will give value of radioactivity more than the 

lower order of fractional calculus. This 

solutions can use for management the residue in 

the future. 
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