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Abstract This research proposed a design of mixed control charts to monitoring the process quality

based on attribute data together with variable data called a Mixed NE chart. The integration of Genetic

Algorithm (GA) and Monte Carlo (MC) simulation are used to simultaneously assess the efficiency of a

Mixed NE chart based on three different scenarios of the control limit coefficients (Lnp, LEWMAX−R).

In this study, MC simulation is used to evaluate the maximum average of run length in case of in-

control process ARL0 while the GA is demanded to optimize the control limit coefficients that obtain the

maximum ARL0. In addition, the efficiency of the Mixed NE chart according to the process shifts are

measured using the average of run length in case of out of control process (ARL1) and the extra quadratic

loss(EQL). The results indicate that the Mixed NE chart performed well for small sample size(n), low

smoothing constant (λw, λz) and the optimal design of control limit coefficient is L∗
np > L∗

EWMAX−R
.

Moreover, the optimal design of the Mixed NE chart brings new important perspectives to achieve the

most efficiency of control chart.
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1. Introduction

Quality control of the industrial process is used to ensure that the products are stan-
dard and quality. The widely used techniques of process quality control to monitor and
detect the variation occurring in the production process is the statistical control chart
(CC). Two types of CCs are normally used to monitor the process in the manufacturing,
which introduced by Shewhart [1]. The quality characteristic of items is monitored by
the variable CC while the number of defective item is monitored by the attribute CC
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respectively. Many studies claim that Shewhart CC is not effective to monitor a small
process shifts. From this problem, Roberts said that the EWMA chart is more efficient
to monitor when a small shift in the process has occurred [1]. In addition, many re-
searchers have applied EWMA charts more efficiently, such as, the EWMA chart is used
to combine the mean and variance of process into a single CC, called MaxEWMA chart
(Chen et al., [2]) The MaxEWMA chart is improved over the Max CC of Chen et al.
[3]. Morais and Pacheco [4] presented a combined EWMA(CEWMA) chart to observing
the process which measure the efficiency of proposed CC by using the ARLs. Costa and
Rahim [5] constructed the single EWMA chart that is applied from the EWMA-SC chart.
The result indicates that, their CC have more efficient to monitoring process than X −R
CCs. Moreover, the study indicates that these single EWMA chart more efficient than
the combined of EWMA X chart and EWMAln s2 chart in some cases. Khoo et al. [6]
proposed a single EWMA chart that combined two Shewhart CCs called EWMA X −R
chart. The X and R statistics are transformed to two EWMA statistics using standard
random variables. Then two EWMA statistics are combined into a single plot statistic.
Saeed and Kamal [7] compared the performance of six robust scale estimators for EWMA
chart for detecting small shifts by calculating expected out-of-control points and expected
widths. Raza et al. [8] presented new Shewhart control chart and new EWMA control
chart with two phase sampling based on exponential estimator.

Recently, the quality inspection plan is necessary in the industry, many researchers
presented a combined CC using advantages of attribute CCs together with variable CCs.
Such as, the np chart and X chart are combined to observe the mean of a process by
Sampaio et al. [9]. The study indicates that these new CC is more efficient than the
traditional CC. Aslam et al. [10] designed the new np chart and the X chart depend on
repetitive sampling. They indicated that the new control charts offer the higher efficiency
than the traditional CC. Aslam et al. [11] presented a combined CC to inspect the
defective items or monitor a mean of the process using attributes and variables data.
Two mixed CCs were designed by Aslam et al. [12]. These CC is used to monitoring the
number of defective items. If the decision is uncertain with the attribute CC, the process
is changed to monitoring using EWMA statistics or hybrid EWMA(HEWMA) statistics
with the variable CC. Ho and Aparisi [13] proposed CCs that are a combination of variable
CC together with attribute CC to observe the mean of process, called ATTRIVAR1 and
ATTRIVAR2 charts. Ho and Quinino [14] presented the MIX S2 chart to monitor a
variance of the process that is combined between attribute data and variable data.

Based on the literature review, most researchers only use the ARLs to assess the
efficiency of the proposed CC when the process shifts. In addition, some studies have
considered the effectiveness of proposed CCs using EQL values to analyze the overall
efficiency of a CC. Such as, Wu et al. [15] constructed an attribute CC to observe the
average of variable, called the np-X chart. The average time to signal (ATS) and EQL are
applied to measure the efficiency of modified CC. Ou et al. [16] proposed a comparison
of the robustness and effectiveness of nine CCs for monitoring the mean of a variables.
The best overall efficiency of the charts are determined by an average of EQL, while the
relative overall efficiency of the CCs are measured by Performance Comparison Index
(PCL). Haridy et al. [17] applied an attribute CC to monitor when the process shifts
in mean and variance. An overall efficiency of these CCs are measured by the ATS
and AEQL. They concluded that the proposed CC more effective and less costly than
Shewhart CC. The overall efficiency of the X −R chart and X − S chart are studied by
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Haridy et al. [18]. They concluded that the sample size are effects to monitoring the
process shifts. The overall efficiency of CC is measured by the AEQL, while the ATS is
used to measure for detecting a process shift. Riaz et al. [19] presented a mixed Tukey
EWMA-CUSUM chart to enhance process monitoring.They evaluate the efficiency of the
mixed CC, under the real lift applications, in term of ARLs while the overall efficiency of
these CCs are measured by EQL.

Genetic Algorithm (GA) is one of the most popular method to find the optimal value
that provided the best answer of the problem, which is developed from the genetic pro-
cesses (Holland, [20]). In recently, many researchers indicates that GA can be used to
resolve the problem of optimizing in a statistical quality control situation. In example,
Charongrattanasakul and Pongpullponsak [21] analyzed the cost of the proposed inte-
grated economic model using the GA approach. Charongrattanasakul and Pongpullpon-
sak [22] applies the fuzzy number to develop their proposed economic model using the GA
approach to find optimal variables to minimize cost of model. Moreover, many studies
in field of economic statistical design of control chart such as Lina et al. [23], Bashiri
et al. [24] and Ahmed et al. [25], applied the GA method to obtain the optimal solu-
tion of their proposed economic design model. In studies of control chart design, many
researches proposed the optimal design of mixed control chart based on grid search, GA
and Monte Carlo simulation to determine the optimal parameters that are corresponding
to ARLs. (For example see [9–13]). In addition, some studies designed to hybrid a pop-
ular metaheuristic for solving optimization problems. For example, Sombat et al. [26]
presented the perspective and experiments of the hybrid algorithm of genetic algorithm
and particle swarm optimization to solve the optimization problems. As mentions above,
we are interested to apply the integrated optimization method of GA and MC simulation
in order to increase the efficiency of mixed CC design.

In this research we modified a mixed CC to observe the process based on attributes
data and variables data called Mixed NE chart. Number of defective items are considered
based on np chart, but variable data are required based on EWMA X−R chart when the
decision is in a warning period. The integration of GA and MC simulation were applied
to find the optimal value of control limit coefficient of the Mixed NE chart. The ARLs
and EQL were calculated to assess the efficiency of the Mixed NE chart according to
the process shifts in mean and variance. Numerical examples were used to indicate the
efficiency of the Mixed NE chart with three different scenarios. The optimal values of
control limit coefficient were considered in the simulation studied that affect the efficiency
of the Mixed NE chart.

2. Materials and Methods

In this section, the Mixed NE chart is combined between the attribute CC and the
variable CC were presented. This CC is established to monitor the process shifts under
the normal distribution. The combined GA and MC simulation were applied to optimize
the value of the control limit coefficient as follows.

2.1. EWMA X −R Control Chart

Khoo et al. [6] introduced a modified CC called EWMA X −R chart. They proposed
the methods to combine two Shewhart CCs into the EWMA chart. These CC can be
monitors the mean together with variance of process inspection as follow.
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Let Xij be a gauge of the process quality characteristic with a normal distributed
corresponding to mean Let µ1 = µ0 + δσ0 and standard deviation σ1 = βσ0. If δ = 0
and β = 1, then the process is in-control (IC) signal. Suppose that i indicate the sample
numbers i = 1, 2, 3, ..., n and j indicate observation numbers j = 1, 2, 3, ...,m respectively.
Let Xi be the ith sample of variable mean and Ri be the ith sample of variable range
where Xi(m) and Xi(1) denotes the largest and smallest gauging in ith sample respectively.
As the following equation

Xi =

∑m
j=1Xij

m
(1)

Ri = Xi(m) −Xi(1). (2)

Supposed that F(.)denote the normal cumulative distribution function (CDF), N ∼
(µ0, σ

2
0). Let Yij = F (xij) be the jth random observation in ith sample with a uni-

form distribution U(0, 1). Suppose that R′i is the ith sample of variable range for
Yi(1), Yi(2), ..., Yi(m) in ith sample, which Yi(m) and Yi(1) denotes the largest and smallest
gauging in ith sample respectively.

From various variables as mentioned above, assuming that Ui and Vi represents random
variables that have standard normal distribution of ith sample as shown in the following
equation (for further details see Khoo et al., [6]).

Ui =
(Xi − µ0)

σ0√
m

, i = 1, 2, 3, ... (3)

Vi = φ−1G(q′i), i = 1, 2, 3, ... (4)

Assume that G(q′i) represents the CDF of R′i and G(q′i) = G(q′i)
m−1 − (m − 1)(q′i)

m,
0 < q′i < 1, where q′i = Yi(m) − Yi(1). Let φ(Z) be the CDF of Z ∼ N(0, 1), which φ−1(.)
is the inverse function of φ(.). The EWMA statistics given by Eq.(5)-(6) respectively.

Wi = λWUi + (1− λW )Wi−1 (5)

Zi = λZVi + (1− λZ)Zi−1 (6)

where W0 = Z0 = 0 is the starting values, λZ and λW are the smoothing constant,
0 < λW , λZ < 1, i = 1, 2, 3, .... Suppose Wi and Zi are combined into Mi as the following
Eq.(7)

Mi = max‖Wi‖, ‖Zi‖, i = 1, 2, 3, ... (7)

The EWMA X − R chart is created by considering Mi based on upper control limit
because Mi ≥ 0 as the following equation.

UCLi = E(Mi) + LEWMAX−R

√
V ar(Mi), i = 1, 2, 3, ... (8)

E(Mi) =

√
2(σ2

Wi
) + (σ2

Zi
)

π
(9)

V ar(Mi) =
2

π
[σ2
Wi

[arctan(
σWi

σZi

)− 1] + σ2
Zi

[arctan(
σZi

σWi

)− 1] + σWi
σZi

] (10)

where LEWMAX−R represent control limit coefficient, which is used to determine the

width of the EWMA X −R chart.
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2.2. Design of the Mixed NE Chart

In this section, the Mixed NE chart was constructed by applying the np chart together
with the EWMA X − R chart. Both CCs are used to inspect the process quality char-
acteristics separately. First, inspection the sample using the gauge to see the defective
items under the np chart. If the number of defective item is in the warning period, the
inspection process will change to be a variable inspection under the EWMA X−R chart.
Then, the data set from both CCs will be analyst together as follows.

Step1. Sampling procedure
Select n units of sample with m observation from the data under Normal distribution

N ∼ (µ0, σ
2
0).

Step2. Inspection by gauge
Suppose that i indicate the sample numbers i = 1, 2, 3, ..., n and j indicate observation

numbers j = 1, 2, 3, ...,m respectively. Assuming Xij represented a measurement of a
quality characteristic from a process jth random observation, where j = 1, 2, 3, ...,m , in
ith sample where i = 1, 2, 3, ..., n respectively. Let Xij be inspected by gauge under the
control limit requirements as shown in Eq.(11)

UCLX = µ0 + 3σ0 and LCLX = µ0 − 3σ0. (11)

If LCLX ≤ Xij ≤ UCLX the unit is declared as accepted; otherwise, it is declared as
rejected. Let Yi denoted number of defective items are rejected by gauge in ith sample.

Step3. Inspection by np chart
In this step, we suppose pi is the probability that unit classified as rejected in ith sample

(from Step 2) then the average proportion of defective items is p =
∑n

i=1 pi
n . Inspect Yi

from Step 2 based on the optimal control limit of np chart as shown in Eq.(12)

UCLnp = np+ Lnp
√
np(1− p) and LCLnp = np− Lnp

√
np(1− p) (12)

where Lnp denote the control limit coefficient which it is used to control the width of the
np chart. Let w be the limit to remind the process is in the warning period.

Figure 1. Procedure of np chart

From Figure 1, notify that the process is out of control (OCC) if Yi > UCLnp. Other-
wise, if w > Yi the process notify is IC signal. In addition,
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if w ≤ Yi ≤ UCLnp then the next sample in this process will be monitored using EWMA

X −R (go to next step).

Step4. Inspection by EWMA X −R
Use the same unit of sample from 2.2.1 to compute the Xi and Ri that are computed

in Eq.(1)-(2). Then, the value of Ui, Vi,Wi, Zi and Mi, i = 1, 2, 3, ..., n are computed in
Eq.(3)-(7). Next, Mi is inspected based on the optimal control limit of EWMA X − R
chart. Notify that is the OCC signal if Mi > UCLi. Otherwise, if Mi ≤ UCLi notify
that is IC signal as shown in Figure 2.

Figure 2. Inspection procedure for the Mixed NE chart

2.3. Efficiency Analysis of Control Chart

The efficiency of CCs can be measured by using various methods. In this research,
there are two classifications of these measures. The ARLs are used to measures the pro-
cess for specific shifts while the EQL is used to measures the overall process shifts as
follows.

Step1. Average of Run Length
There are two type of ARL, which are denoted by ARL0 and ARL1. The ARLs are

used to evaluate the efficiency. Under the conditions of the IC signal, the mean number
of samples that are within the control limit before the OCC signal denoted by ARL0 ,
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while the mean number of samples when the process shift to the OCC signal is denoted
by ARL1 as follows.

The average of run length of process in case of IC signal is ARL0 = 1
α , suppose α

denotes the probability of summarize that process is in the OCC signal, but in actually,
the process is IC signal as follow in Eq.(13).

α = P [(Yi > UCLnp), µ=µ0] + 1− P [(Mi ≤ UCLEWMAX−R|w ≤ Yi ≤ UCLnp), µ=µ0]
(13)

The average of run length in case of OCC process is ARL1 = 1
1−β , suppose β denote

the probability of summarize that process is the IC signal, but in actually, the process is
OCC signal as follow in Eq.(14).

1−β=P [(Yi>UCLnp), µ=µ1] + 1− P [(Mi≤UCLEWMAX−R|w ≤ Yi ≤ UCLnp), µ=µ1]
(14)

Step2. Extra Quadratic Loss
In situation of the efficient of CC, the shift size and the quality impact of CC are

related that EQL is calculated to analyses these relationship. The overall efficiency of a
CC is measured in a range of shifts (0 < δ < δmax). The smaller EQL, the better overall
efficiency of the CC. The EQL is calculated as follow Eq.(15).

EQL(δ) =

∫ δmax

δmin

w(δ)ARL(δ)f(δ)dδ (15)

where δmin and δmax are the lower bound and the upper bound of range in case the process
shifts respectively. Suppose δmin is set as zero for simple to calculations. Let w(δ) be the
weight function of δ with w(δ) = δ2. Supposed that δ occur with equal probability, which
a density function of a uniform distribution is f(δ) = 1

δmax
. In actual calculations, the

integration in Eq.(15) can be estimated by the summation. Consequently, Eq.(15) can be
further simplified as follows Eq.(16) (for more details see [16]).

EQL(δ) =
1

δmax

δmax∑
δ=0

ARL(δ). (16)

In addition, the process shifts in mean and variance (0 < δ < δmax, 1 < β < βmax),
EQL is adapt to observe the efficiency of a CC which the weight function of δ and β given
as (δ2 + β2 − 1). Then, the EQL for both process shifts can be calculated in Eq.(17)

EQL(δ, β) =

∫ δmax

0

∫ βmax

0

(δ2 + β2 − 1)ARL(δ, β)f(δ)f(β)dδdβ. (17)

Suppose that δ and β occur with equal probability, therefore, a density function of
a uniform distribution are f(δ) = 1

δmax
and f(β) = 1

βmax−1 respectively. Similarly as

Eq.(16) the integration can be approximated by the summation. Then, the expression of
EQL given in Eq.(18)

EQL(δ, β) =
1

δmax(βmax − 1)

δmax∑
δ=0

βmax∑
β=1

(δ2 + β2 − 1)ARL(δ, β). (18)
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2.4. Optimization Methods Using Genetic Algorithm

Genetic Algorithm (GA) is one of the most popular method to find the optimal value
that provided the best answer of the problem, which is developed from the genetic pro-
cesses [20]. The data will be considered in the form of encoding called chromosomes,
which is transmitted from the parent chromosome to their child chromosome. The objec-
tive function is defined in accordance with the problem by considering the fitness value
of chromosome for problems that need to be calculated. To do this, genetic operators are
taken with the initial chromosomes until the new chromosome is the most suitable for the
problem. The procedure for the GA is briefly described as illustrating in Figure 3.

Figure 3. The solution procedure for the GA

1) Chromosome encoding is the first step for solving the problem using GA by
starting to convert the data type of the problem to chromosomes.

2) Initial population is randomly selected to create a prototype population that
is the starting point of the process.The fifty initial solutions that satisfy the constraint
condition are randomly produced. The constraint condition for control chart coefficient
of each control chart is set as 2 < Lnp < 3 , 2 < LEWMAX−R < 3.

3) Fitness function is a method of assessing opportuneness to provide points for
answers to problems. The optimal chromosome is used to transferring genes to create
a new generation of chromosomes. The fitness function for our studies is the maximum
ARL0.

4) Selection is a method for finding a survival of organisms by selecting them as parent
chromosome. The survival chromosomes are selected for the next generation according
to the better fitness of chromosomes. The most satisfy selection of chromosomes is done
for reproduction.

5) Crossover is the method in order to make chromosomes more changeable by mixing
two chromosomes together then the new chromosome has occurred which two of survivors
(from the 50 solutions) are selected randomly as the parents used for crossover operations
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to produce new chromosomes for the next generation. In this study the crossover rate is
0.9.

6) Mutation is a random method to choose a solution, which each value within the
solution will be changed randomly at a mutation rate between 0.01 to 0.1. In this study
the mutation rate is 0.1.

7) Stopping condition when a pre-selected number of generations are achieved.
After that, a few preliminary tests are performed to obtain a reasonable number. In this
study, we use fifty generations as stopping criteria.

3. Numerical Example

In this section, the efficiency analysis of the mixed CC are considered. In literature
reviews, many researches used the only Monte Carlo simulation or optimization method
to find the control limit coefficients Lnp and LEWMAX−R by fix the value of ARL0. This
research proposes a method to calculate the optimal value of L∗np and L∗

EWMAX−R that

maximize ARL0 for various values of n with the optimization model using the integration
of GA and MC simulation. In GA method, we supposed that the fixed value of initial
population is 50 generations. The crossover rate is 0.90 and the mutation rate is 0.01,
while the MC simulation has the repetition 10,000 times respectively.

In recently, many studies such as [10–14] proposed a mixed control chart, but the value
of control chart coefficient between two CCs are not compared. From this situation, the
aim of this research proposed three different scenarios between Lnp and LEWMAX−R that
affects to the efficiency of Mixed NE chart as follows Eq.(19)-(20).

Maximize ARL0 (19)

Subject to 2 < Lnp, LEWMAX−R < 3. (20)

Scenario 1 (S1): Lnp > LEWMAX−R
Scenario 2 (S2): Lnp < LEWMAX−R
Scenario 3 (S3): Lnp = LEWMAX−R.

The procedure to analyst the efficiency of the Mixed NE chart shown as follows.

Phase I: A random variableXij is generated with normal distributionN(µ0 = 500, σ2
0 =

100) (The data are given in [6]) with m = 100 observation and select n = 4, 5 and 6 units
of sample respectively. The integration of GA and MC simulation are used to generate
the optimal L∗np and L∗

EWMAX−R for each scenario to maximize ARL0 at δ = 0 and

β = 1 as shown in Figure 4.

Phase II : ARL1 and EQL are determined to assess the efficiency of the Mixed
NE chart when the process shifts using the optimal L∗np and L∗

EWMAX−R in phase I.

ARL1 and EQL are considered based on three different scenarios which is estimated
by MC simulation with Tmax = 10, 000 repetitions. The fixed value of mean shift are
δ = 0.25, 0.5, 1, 1.25, 1.5 and variance shift are β = 1, 1.5, 2, 2.5 respectively.
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Figure 4. Algorithm of the integration of GA and MC simulation

4. Results

In this situation, the ARLs and EQL are indicated the advantage of the Mixed NE
chart. In case of IC process, GA is applied to obtain the optimal L∗np and L∗

EWMAX−R
corresponding to maximum ARL0 with three different scenarios for some specific sample
size(n = 4, 5, 6), warning limit of the np CC (w = 2) and the fixed value of the smoothing
constant are λw = λz = 0.2, 0.4, 0.6 and 0.8 respectively.

From Table 1, the optimal L∗np and L∗
EWMAX−R corresponding to maximum ARL0

are optimized by the integration of GA and MC simulation. Considering in each value
of λW and λZ , it is indicated that the Mixed NE chart has the higher ARL0 when the
smoothing constant 0 < λW , λZ < 1 approach to one. If considering in each sample size,
results shown that the Mixed NE chart is the higher ARL0 when a sample size is decreased
respectively. Next, the OCC efficiency of the Mixed NE chart can be investigated. To
do this, ARL1 and EQL are used to assess the efficiency of the proposed mixed CCs
according to process shift in mean and variance by Monte Carlo simulation with 10,000
repetitions. Considering the overall values of ARL1 and EQL of the Mixed NE chart in
cause of the process shifts in Tables 2-3. The results indicate that, considering in each
value of λW and λZ , ARL1 is decreasing when δ or β are increasing. Moreover, the
Mixed NE chart has the lowest EQLwhen the smoothing constant approach to zero. If
considering in each sample size, results shown that the Mixed NE chart is the lower ARL1

when a sample size is increased respectively.
From Table 2, the Mixed NE chart that corresponding to three different scenarios are

investigated with process shift in mean (mean increases and variance remain constant).
The optimal design for n = 4 are resulted, S3 provides the best efficiency (lowest ARL1
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and EQL)of the Mixed NE chart when λW = λZ = 0.2, S2 provides the best efficiency
when λW = λZ = 0.4 and 0.6 while S1 provides the best efficiency when λW = λZ = 0.8
respectively. The optimal design for n = 5 are resulted, S3 provides the best efficiency
when λW = λZ = 0.2 and 0.6 , S1 provides the best efficiency when λW = λZ = 0.4 while
S2 provides the best efficiency when λW = λZ = 0.8 respectively. The optimal design
for n = 6 are resulted, S2 provides the best efficiency when λW = λZ = 0.2, S1 and S2
provides the best efficiency when λW = λZ = 0.4, S2 provides the best efficiency when
λW = λZ = 0.6 and S3 provides the best efficiency when λW = λZ = 0.8 respectively.

From Table 3, the efficiency of the Mixed NE chart that corresponding to 3 different
scenarios are investigated with process shift in variance (variance increases and mean
remain constant). The optimal design for n = 4 are observed, S1 provides the best
efficiency of the CC when λW = λZ = 0.2, 0.6 and 0.8 while S3 provides the best efficiency
when λW = λZ = 0.4 respectively. The optimal design for n = 5 are observed, S2
provides the best efficiency when λW = λZ = 0.2, S1 provides the best efficiency when
λW = λZ = 0.4, while S3 provides the best efficiency when λW = λZ = 0.6 and 0.8
respectively. The optimal design n = 6 are observed, S1 provides the best efficiency
when λW = λZ = 0.2 and 0.4, S1 provides the best efficiency when λW = λZ = 0.4,
S2 provides the best efficiency when λW = λZ = 0.6 and S3 provides the best efficiency
when λW = λZ = 0.6 and 0.8 respectively. The results in Tables 2-3 indicated that the
value λW = λZ = 0.2 provides the Mixed NE chart has the best efficiency. In addition,
the optimal scenario of L∗np and L∗

EWMAX−R with respect to n = 4, 5 and 6 from Tables

2-3 can be summarized as follows in Table 4. In addition, the efficiency of the Mixed
NE chart that corresponding to 3 different scenarios are investigated with process sifts
in mean and variance when λW = λZ = 0.2, n = 4, 5 and 6 as follows in Table 5. The
results shown that S1 provides the best efficiency of the Mixed NE chart.

Table 1. The optimal L∗np and L∗
EWMAX−R corresponding to maximum

ARL0 at δ = 0 and β = 1 [((L∗np, L
∗
EWMAX−R)) = (A,B)]

n = 4

S1 S2 S3

λW = λZ (A,B) ARL0 (A,B) ARL0 (A,B) ARL0

0.2 (2.55,2.23) 348.36 (2.42,2.77) 349.43 (2.08,2.08) 348.70
0.4 (2.79,2.47) 349.14 (2.03,2.20) 349.49 (2.13,2.13) 349.17

0.6 (2.35,2.24) 348.59 (2.10,2.20) 349.49 (2.38,2.38) 349.43

0.8 (2.59,2.01) 350.55 (2.21,2.68) 349.63 (2.71,2.71) 351.15

n = 5

S1 S2 S3

λW = λZ (A,B) ARL0 (A,B) ARL0 (A,B) ARL0

0.2 (2.58,2.20) 180.90 (2.18,2.52) 180.48 (2.29,2.29) 184.04
0.4 (2.50,2.20) 180.99 (2.37,2.78) 181.55 (2.37,2.37) 181.27

0.6 (2.55,2.26) 181.43 (2.26,2.51) 181.93 (2.39,2.39) 182.71

0.8 (2.67,2.23) 193.60 (2.21,2.61) 194.39 (2.52,2.52) 195.74

n = 6

S1 S2 S3

λW = λZ (A,B) ARL0 (A,B) ARL0 (A,B) ARL0

0.2 (2.74,2.40) 41.09 (2.33,2.53) 42.29 (2.57,2.57) 42.53
0.4 (2.70,2.47) 44.58 (2.36,2.63) 45.57 (2.81,2.81) 44.79

0.6 (2.75,2.43) 53.34 (2.24,2.73) 52.70 (2.78,2.78) 53.36

0.8 (2.82,2.41) 88.84 (2.25,2.55) 88.50 (2.56,2.56) 88.20
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Table 2. The values of ARL1 and EQL of the Mixed NE chart in cause
of the process shift in mean(µ = µ0 + δσ0)where n = 4, 5 and 6

n = 4

δ

λW = λZ (L∗
np, L

∗
EWMAX−R

) 0.25 0.5 0.75 1 1.25 1.5 EQL

S1 0.2 (2.55,2.23) 332.14 299.22 205.02 88.61 27.65 6.70 47.97

0.4 (2.79,2.47) 332.43 297.60 206.91 90.45 32.06 14.03 48.67
0.6 (2.35,2.24) 328.22 296.76 205.73 94.43 40.51 27.46 49.66
0.8 (2.59,2.01) 333.95 297.09 213.21 113.70 76.70 73.04 55.38

S2 0.2 (2.42,2.77) 328.92 297.76 208.33 90.63 27.06 6.96 47.98

0.4 (2.03,2.20) 331.41 294.76 204.20 90.45 32.06 14.03 48.35
0.6 (2.10,2.20) 330.52 291.91 210.38 92.30 14.03 27.35 49.59
0.8 (2.21,2.68) 333.95 297.98 215.04 115.20 48.35 73.07 55.60

S3 0.2 (2.08,2.08) 331.14 296.72 203.91 88.93 28.49 8.25 47.87

0.4 (2.13,2.13) 332.24 296.20 209.49 91.36 31.42 14.18 48.74
0.6 (2.38,2.38) 329.52 297.12 206.50 95.28 39.70 27.41 49.78
0.8 (2.71.2.71) 330.58 299.62 217.13 115.33 76.85 73.05 55.63

n = 5

δ

λW = λZ (L∗
np, L

∗
EWMAX−R

) 0.25 0.5 0.75 1 1.25 1.5 EQL

S1 0.2 (2.58,2.20) 142.73 71.61 26.12 7.61 2.03 1.06 12.56

0.4 (2.50,2.20) 139.63 73.62 29.23 13.17 10.22 10.00 13.79
0.6 (2.55,2.26) 143.47 78.83 37.47 27.08 26.01 26.00 16.94
0.8 (2.67,2.23) 158.07 102.36 76.06 73.03 73.00 73.00 27.78

S2 0.2 (2.18,2.52) 140.09 72.82 25.08 6.74 1.94 1.07 12.39
0.4 (2.37,2.78) 143.65 74.42 29.45 12.93 10.23 10.01 14.03
0.6 (2.26,2.51) 146.96 76.76 37.82 27.04 26.01 26.00 17.03

0.8 (2.21,2.61) 155.94 102.2 75.97 73.03 73.00 73.00 27.66

S3 0.2 (2.29,2.29) 139.3 73.1 24.66 7.25 1.87 1.08 12.36
0.4 (2.37,2.37) 141.4 74.66 28.37 13.17 10.21 10.01 13.89

0.6 (2.39,2.39) 142.58 79.18 37.16 27.02 26.02 26.00 16.90
0.8 (2.52,2.52) 161.1 102.9 76.03 73.04 73.02 73.00 27.96

n = 6

δ

λW = λZ (L∗
np, L

∗
EWMAX−R

) 0.25 0.5 0.75 1 1.25 1.5 EQL

S1 0.2 (2.74,2.40) 24.34 10.57 3.42 1.26 1.01 1.00 2.08
0.4 (2.70,2.47) 27.05 15.97 10.77 10.03 10.00 10.00 4.19
0.6 (2.75,2.43) 36.25 28.48 26.16 26.00 26.00 26.00 8.44

0.8 (2.82,2.41) 75.55 73.14 73.00 73.00 73.00 73.00 22.03

S2 0.2 (2.33,2.53) 23.37 10.64 3.39 1.27 1.01 1.00 2.03
0.4 (2.36,2.63) 27.14 15.82 10.82 10.04 10.00 10.00 4.19

0.6 (2.24,2.73) 36.68 28.57 26.14 26.00 26.00 26.00 8.47

0.8 (2.25,2.55) 75.73 73.24 73.00 73.00 73.00 73.00 22.05

S3 0.2 (2.57,2.57) 23.49 10.72 3.40 1.23 1.01 1.00 2.04

0.4 (2.81,2.81) 27.72 15.88 10.86 10.04 10.00 10.00 4.22
0.6 (2.78,2.78) 36.9 28.48 26.15 26.00 26.00 26.00 8.48

0.8 (2.56,2.56) 75.13 73.16 73.00 73.00 73.00 73.00 22.01
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Table 3. The values of ARL1 and EQL of the Mixed NE chart in cause
of the process shift in variance(σ = βσ0)where n = 4, 5 and 6

n = 4

δ

λW = λZ (L∗
np, L

∗
EWMAX−R

) 0.25 0.5 0.75 1 1.25 1.5 EQL

S1 0.2 (2.55,2.23) 219.97 87.09 33.62 14.96 474.19 1.00 2.08

0.4 (2.79,2.47) 221.01 86.85 36.53 19.79 485.58 10.00 4.19
0.6 (2.35,2.24) 222.26 92.42 43.4 30.53 518.14 26.00 8.44
0.8 (2.59,2.01) 224.32 111.86 78.71 73.52 651.21 73.00 22.03

S2 0.2 (2.42,2.77) 219.87 88.62 33.45 15.10 476.05 1.00 2.03

0.4 (2.03,2.20) 221.01 88.75 36.08 20.04 487.84 10.00 4.19
0.6 (2.10,2.20) 225.04 92.73 43.95 30.73 523.27 26.00 8.47
0.8 (2.21,2.68) 229.11 112.01 78.92 73.64 658.23 73.00 22.05

S3 0.2 (2.08,2.08) 222.3 86.25 33.13 15.29 475.96 1.00 2.04

0.4 (2.13,2.13) 218.58 85.83 36.2 19.41 480.03 10.00 4.22
0.6 (2.38,2.38) 222.3 92.55 43.85 31.12 519.76 26.00 8.48
0.8 (2.71.2.71) 228.54 111.86 78.72 73.59 656.95 73.00 22.01

n = 5

δ

λW = λZ (L∗
np, L

∗
EWMAX−R

) 0.25 0.5 0.75 1 1.25 1.5 EQL

S1 0.2 (2.58,2.20) 31.69 7.75 2.65 1.45 58.06 1.00 2.08

0.4 (2.50,2.20) 33.39 13.47 10.51 10.06 89.89 10.00 4.19
0.6 (2.55,2.26) 42.38 27.21 26.06 26.00 162.19 26.00 8.44
0.8 (2.67,2.23) 77.97 73.04 73.00 73.00 396.02 73.00 22.03

S2 0.2 (2.18,2.52) 30.74 7.52 2.60 1.42 56.37 1.00 2.03
0.4 (2.37,2.78) 34.36 13.38 10.51 10.05 91.06 10.00 4.19
0.6 (2.26,2.51) 41.49 27.25 26.05 26.00 161.05 26.00 8.47

0.8 (2.21,2.61) 77.95 73.00 73.00 73.00 395.94 73.00 22.05

S3 0.2 (2.29,2.29) 31.45 7.37 2.61 1.44 57.16 1.00 2.04
0.4 (2.37,2.37) 34.09 13.39 10.51 10.08 90.75 10.00 4.22

0.6 (2.39,2.39) 41.31 26.99 26.06 26.00 160.48 26.00 8.48
0.8 (2.52,2.52) 77.89 73.04 73.00 73.00 395.91 73.00 22.01

n = 6

δ

λW = λZ (L∗
np, L

∗
EWMAX−R

) 0.25 0.5 0.75 1 1.25 1.5 EQL

S1 0.2 (2.74,2.40) 4.22 1.34 1.04 1.00 10.14 1.00 2.08
0.4 (2.70,2.47) 10.00 10.05 10 10.00 53.41 10.00 4.19
0.6 (2.75,2.43) 26.25 26.00 26.00 26.00 139.00 26.00 8.44

0.8 (2.82,2.41) 73.00 73.00 73.00 73.00 389.34 73.00 22.03

S2 0.2 (2.33,2.53) 4.24 1.34 1.05 1.00 10.17 1.00 2.03
0.4 (2.36,2.63) 11.34 10.05 10.00 10.00 55.19 10.00 4.19

0.6 (2.24,2.73) 26.26 26.01 26.00 26.00 139.03 26.00 8.47

0.8 (2.25,2.55) 73.01 73.00 73.00 73.00 389.35 73.00 22.05

S3 0.2 (2.57,2.57) 4.23 1.35 1.03 1.01 10.15 1.00 2.04

0.4 (2.81,2.81) 11.32 10.07 10.00 10.00 55.19 10.00 4.22
0.6 (2.78,2.78) 26.24 26.00 26.00 26.00 138.98 26.00 8.48

0.8 (2.56,2.56) 73.00 73.00 73.00 73.00 389.33 73.00 22.01
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Table 4. Summaries of the optimal scenarios of L∗np and L∗
EWMAX−R

with respect to n = 4, 5 and 6

λW = λZ

Type of
process shift

Sample size (n) 0.2 0.4 0.6 0.8

mean shifts 4 S 3 S 2 S 2 S 1
5 S 3 S 1 S 3 S 2
6 S 2 S1 and S2 S2 S3

variance shifts 4 S 1 S 3 S 1 S 1
5 S 2 S 1 S 3 S 3
6 S 1 S 1 S 3 S 3

Table 5. The values of ARL1 and EQL of the Mixed NE chart in cause
of the process shift in mean and variance where n = 4, 5 and 6

n = 4,λW = λZ = 0.2,(L∗
np, L

∗
EWMAX−R

)=(2.55,2.23)

S1 S2 S3

β β β

δ 1.25 1.5 1.75 2 1.25 1.5 1.75 2 1.25 1.5 1.75 2

0.25 194.61 71.73 27.34 12.94 195.04 71.73 27.34 12.94 197.34 70.28 28.65 12.50

0.50 124.27 41.06 15.85 7.42 125.16 41.06 15.85 7.42 123.92 40.22 16.02 7.34

0.75 54.06 17.51 7.51 3.59 54.84 17.51 7.51 3.59 56.76 17.74 7.38 3.54

1 18.88 6.49 2.85 1.60 18.88 6.49 2.85 1.60 18.76 6.41 2.93 1.72

1.25 5.92 2.14 1.35 1.12 5.86 2.14 1.35 1.12 5.80 22.00 1.30 1.11

1.50 1.93 1.17 1.02 1.01 1.99 1.17 1.02 1.01 1.99 1.18 1.04 1.01

EQL 512.62 512.78 514.70

n = 5,λW = λZ = 0.2,(L∗
np, L

∗
EWMAX−R

)=(2.58,2.20)

S1 S2 S3

β β β

δ 1.25 1.5 1.75 2 1.25 1.5 1.75 2 1.25 1.5 1.75 2

0.25 24.21 6.24 2.18 1.29 24.51 6.16 2.23 1.31 23.66 6.24 2.18 1.29

0.50 12.82 3.13 1.47 1.10 11.46 3.14 1.45 1.11 12.82 3.13 1.47 1.10

0.75 4.62 1.51 1.07 1.01 4.37 1.53 1.09 1.01 4.62 1.51 1.07 1.01

1 1.59 1.05 1.01 1.00 1.60 1.06 1.00 1.00 1.59 1.05 1.01 1.00

1.25 1.03 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.04 1.00 1.00 1.00

1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

EQL 72.92 73.46 73.91

n = 6,λW = λZ = 0.2,(L∗
np, L

∗
EWMAX−R

)=(2.74,2.40)

S1 S2 S3

β β β

δ 1.25 1.5 1.75 2 1.25 1.5 1.75 2 1.25 1.5 1.75 2

0.25 3.31 1.24 1.02 1.00 3.25 1.25 1.01 1.00 3.38 1.22 1.02 1.01

0.50 1.78 1.06 1.00 1.00 1.79 1.06 1.00 1.00 1.78 1.06 1.00 1.00

0.75 1.12 1.01 1.00 1.00 1.14 1.00 1.00 1.00 1.11 1.00 1.00 1.00

1 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

EQL 44.45 44.46 44.47
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5. Conclusion and Discussion

In this research, the Mixed NE chart is designed to observe the process quality based on
both of attributes data and variables data. The np chart together with the EWMA X−R
chart are applied with process inspection. The np chart is used to inspect attributes data
while the EWMA X − R chart is used to inspect variables data. Both CCs are used to
inspect the quality in the process separately. In situation of IC process, the optimal value
of L∗np and L∗

EWMAX−R in three different scenarios are obtained by the integration of GA

and MC simulation. The Mixed NE chart with the smallest sample size (n = 4) provide
the highest ARL0 when λW and λZ approach to one. On the other side, ARL1 and
EQL are used to assess the efficiency of the Mixed NE chart according to the mean and
variance of process shifts. In situation that the process shifts, the results indicated that
the Mixed NE chart is suitable for the smallest sample size and lowest smoothing constant
respectively. At the smallest sample size, S3 (L∗np = L∗

EWMAX−R) is optimal design for

the Mixed NE chart when the process shifts in mean, while S1 (L∗np > L∗
EWMAX−R)

is optimal design when the process shifts in variance. In addition, both of mean and
variance shifts, the results shown that the optimal designed is S1 (L∗np > L∗

EWMAX−R)

respectively.
In conclusion, the results of the study indicated that the optimal value of L∗np and

L∗
EWMAX−R will affect to the efficiency of the Mixed NE chart. We found that the best

scenario of control chart coefficient is L∗np > L∗
EWMAX−R which it provided more effective

to detection of process shifts. Based on this study, we also suggest that manufacturer
should select the smallest sample size, the lowest smoothing constant and the optimal
control chart coefficient is S1 to achieve the desired efficiency.

In future research, Mixed NE chart will be consider when variable data based on other
non-symmetric distributions. Moreover, the other variable control chart is used to inspect
variables data such as MaxEWMA chart, HEWMA chart and HEWMA-CUSUM chart.
Then all of proposed control chart will compare to analysis the efficiency between the
control charts to get the most effective of mixed control chart design.
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