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This paper studies integrated systems approach to Statistical Process Control (SPC) and Maintenance
Management (MM). Previously, only four policies which are in control alert signal, out of control alert sig-
nal, in control no signal, and out of control no signal, were used in the consideration (Zhou & Zhu, 2008).
The objectives of this research are to develop an integrated model between Statistical Process Control and
Planned Maintenance of the EWMA control chart. To do this, warning limit is considered to increase the
policy from four to six such as warning limit alert signal and warning limit no signal. A mathematical
model is given to analyze the cost of the integrated model before the genetic algorithm approach is used
to find the optimal values of six variables (n,h,w,k,g,r) that minimize the hourly cost. A comparison
between four-policy and six-policy models shows that the six policy model contains the hourly cost
higher than that of the four policy model, it is because the addition of the warning limit in the model
leads into increased ability of defective product detection. This consequently results to the increase of
repairing and maintenance of machines; therefore the hourly cost is higher. Finally, multiple regressions
are employed to demonstrate the effect of cost parameters.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, control charts are widely used to maintain and
establish statistical control of a process. Control chart technique
is well-known as a key step in production process monitoring.
The control chart has major function in detecting the happening
of assignable causes, so that the necessary correction could take ac-
tion before non-conforming products are manufactured in a large
amount. The control chart technique may be considered as both
the graphical expression and operation of statistical hypothesis
testing. It is recommended that if a control chart is employed to
monitor process, some test parameters should be determined such
as the sample size, the sampling interval between successive sam-
ples, and the control limits or critical regions of the chart.

Statistical Process Control (SPC) is an efficient technique for
improvement of a firm’s quality and productivity. The main objec-
tive of SPC is, similar to that of the control chart technique, to rap-
idly examine the occurrence of assignable causes or process shifts,
and investigation of the process and corrective action should be
undertaken prior to large numbers of non-conforming unit produc-
tion. The SPC has two main tools in controlling the process, the
‘‘acceptance sampling’’ and the ‘‘control charts’’. The control charts
are on-line process control techniques, popularly used in the pro-
ll rights reserved.
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cess monitoring. By using control charts and collecting few but fre-
quent samples, the SPC can function effectively to investigate
changes in the process that may have affect to the product quality.
One example is the EWMA control chart which is used to monitor
quality characteristics of raw materials or products in a continuous
process or continuous flow processes such as a chemical plant. The
factory will collect data periodically on the results of analysis for
determination of the percentages of certain chemical constituents.

The SPC usage is mainly to establish and maintain a state of sta-
tistical control, and identify special causes of variation. Woodall
(2000) stated that differences in opinion about the purpose and
scope of SPC strategy are partly because of various working in
quality field, which includes quality gurus and their followers,
consultants, quality engineers, industrial engineers, professional
practitioners, statisticians, managers, and others. In this section, the
overall purposes and scopes of SPC strategy are reviewed. During
1920s, Dr. Walter A. Shewhart and his colleagues developed the
Shewhart control charts at Bell Telephone Laboratories. In 1931
defined maximum control as ‘‘condition reached when the chance
cause fluctuations in a phenomenon produced by constant system
of large number of chance causes in which no cause produces a
predominating effect’’ (Shewhart, 1931). Two terms frequently
mentioned in SPC are common cause and special cause variations.
Shewhart advised that the distinguishing between two types of
variations is primarily important for SPC in preventing over reac-
tion or under reaction to the process. He considered common cause
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Nomenclature

Cycle Time (E[T])
T0 the expected time searching for a false alarm
TP the expected time to identify maintenance require-

ments and to perform a Planned Maintenance
TA the expected time to determine occurrence of assign-

able causes
TR the expected time to identify maintenance require-

ments and to perform a Reactive Maintenance
TC the expected time to perform a Compensatory Mainte-

nance
s the mean elapse time from the last sample before the

assignable cause to the occurrence of the assignable
cause

ARLO the average runs length during out-of-control period
E the expected time to sample and chart one item
cP(cR,cC,cA,cw) the indicator variable which equals 1 if produc-

tion continues during Planned Maintenance (Reactive
Maintenance, Compensatory Maintenance, validate
assignable cause, warning period maintenance) or 0
otherwise

pI
i the probability that run length of control chart equals

iduring in-control period pI
i ¼ að1� aÞi�1

pO
i the probability that run length of control chart equals

iduring out-of-control period pO
i ¼ ð1� bÞbi�1

pw
i the probability that run length of control chart equals

iduring warning period pw
i ¼ ð1� /ðwÞ þ /ð�wÞÞ

ð/ðwÞ � /ð�wÞÞi�1

L the width of control limit in units of standard deviation

d the interval between sampling

Cycle Cost (E[C])
CI the cost of quality loss per unit time (the process is in an

in-control state) often estimated by a Taguchi Loss func-
tion

CO the cost of quality loss per unit time (the process is in an
out-of-control state) often estimated by a Taguchi Loss
function

CP the cost of performing Planned Maintenance
CR the cost of performing Reactive Maintenance
CC the cost of performing Compensatory Maintenance
CF the fixed cost of sampling
CV the variable cost of sampling
Cf the cost to investigate a false alarm

Optimal Variable
n the sampling size (n* for optimal)
h the interval between sampling (h* for optimal)
k the number of sample taken before Planned Mainte-

nance (k* for optimal)
w the width of warning control limit in units of standard

deviation (w* for optimal)
g the number of subintervals between two consecutive

sampling times subintervals of lengthd, where d ¼ h
g

(g* for optimal)
r the exponential weight constant (r* for optimal)
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of variation as set of causes attributable to inherent nature of the
process that cannot be altered without changing the process itself,
and for assignable cause of variation, defined as unusual shocks
and disruptions to process the causes of which can and should be
removed (Shewhart, 1931). Furthermore, Woodall (2000) sug-
gested that control charts can also be used in checking process sta-
bility, he described that a process is said to be in state of ‘‘statistical
control’’ if the probability distribution representing the quality
characteristic is constant over time. On the other hand, if there
are some changes in the distribution, the process is said to be
‘‘out of control’’. Thus the decision of acceptance/rejection accord-
ing to the charted statistical value and decision regions must be
made. Some authors including Juran (1998) believed that control
chart and test of hypothesis have very closed relationship. How-
ever, Deming saw possibility of long term process improvement
as being far more important than detection of changes. He clearly
stated that meeting specification limits is not sufficient to ensure
good quality, and the variability of quality characteristic should
be reduced such that ‘‘specifications are lost beyond horizon’’
(Deming, 1986). Thus, his goal of statistical process control mostly
associates with focusing the quality characteristic at the target and
continuously reducing variability. For this reason, Deming remark-
ably supported the use of control charts but disagreed with
hypothesis testing. The other opinion on the SPC came from Mont-
gomery (1991). He stated that SPC is a powerful tools of problem
solving data collection, and useful in achieving process stability
and improving capability through reduction of variability. Accord-
ingly, the principle of control chart utilization is to reduce process
variability, to monitor and keep surveillance of a process, and final-
ly to estimate product and process parameters. Of which, Mont-
gomery believed that most important use of control chart is
process improvement by reducing variability. Three main uses of
control charts have been categorized by Steiner and Mackay
(2000), as bellowed:
(1) To reduce the variation in an output characteristic by estab-
lishing a control chart to signal the change of an unidentified
process input. The occurrence of the signal sets effort to
identify this input.

(2) To determine by when and by how much a process should be
adjusted. A control chart is setup and adjustments are made
only when a signal occurs.

(3) To demonstrate process being stable and capable. The pur-
pose here is to provide information to make decision regard-
ing the receiving inspection.

Box and Luceno (1997) discussed that in order to obtain successful
implementation of a control chart, practitioner requires to make
three important decisions: (1) Is control chart an appropriate tool
for application?, (2) Which type of control chart should be used?,
and (3) Where should control limits be placed?. The authors further
commented that for the first question, the answer depends on
whether or not stable periods without changes in process mean or
variance exist. If there is a stable variance but the process mean
drifts, then automatic process control strategy should be considered
as a means of reducing variability. In case of the second and third
questions, the answers will depend on the purpose on the use of
these charts, i.e., detection of real time process monitoring, problem
solving, assessment of process stability, and nature of disturbance.

Extensive utilization of control charts have been seen in moni-
toring process stability and capability. Function of control charts
are based on representing data or quality-related characteristics
of the product or service. For instance, variable control charts are
mostly used for measurable characteristics on numerical scales.
In case of the quality-related characteristics, this usually cannot
be easily represented in numerical form so attribute control charts
may be useful (Gulbay & Kahraman, 2006). Generally, monitoring
and determination of process are concentrated on the ‘‘under
control’’ or ‘‘out of control’’ process To perform this, other quality



Fig. 1. Six monitoring – maintenance scenarios of the integrated model.
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constraints like quality cost, rate of errors, acceptance probability,
consumer and producer risks, etc. must be accounted in the consid-
eration. Lorenzen and Vance (1986) proposed a general method for
determining the economic design of control charts. The advantage
of this method is its application regardless of the statistic used. It is
necessary to calculate only the average run-length of the statistics
when assuming that the process is in-control and assuming that
the process is out-of-control in some specified manner. Alexander,
Dillman, Usher, and Damodaran (1995) developed a loss model for
estimating the three parameters from combination between the
Duncan’s cost model and the Taguchi Loss function. This loss model
explicitly considers the quality. Rahim and Banerjee (1993) deter-
mined jointly the optimal design parameters on a X control chart
and preventive maintenance (PM) time for a production system
with an increasing failure rate. Other aspects on economic design
of control charts have also been discussed. Development on the
economic design of control charts for monitoring the process mean
has been extensively investigated in the literatures of Montgomery
(1980), and Ho and Case (1994a). Rahim (1994), Ben-Daya (1999),
Ben-Daya and Rahim (2000) investigated integration of X chart and
PM for using in the deteriorating process of in-control period fol-
lows a general probability distribution with increasing hazard rate.
Pongpullponsak et al. (2009) studied a X chart in conjunction with
an age replacement preventive maintenance policy. Ben-Daya and
Rahim (2001) provided an overview of the literature dealing with
integrated models for production, schedule, quality control and
maintenance policy. Recently, Pongpullponsak et al. (2009) intro-
duced an economic model and using Shewhart method to compare
the efficiency of X control chart for skewed distributions. The re-
sults indicated that the production level begins to vary from 3.0 s
of lognormal distribution. The lowest expense was observed at
the coefficient of skewness at (a3) 6. Panagiotidou and Tagaras
(2007) analyzed an economic model for the optimization of pre-
ventive maintenance in a production process with two quality
states. Ho and Case (1994b) presented a literature on control charts
employing an EWMA type statistic, while several authors (e.g.,
Chou, Cheng, & Lai, 2008; Ho & Case, 1994b; Torng, Montgomery,
& Cochran, 1994) have explored the economic design of EWMA
control charts to monitor the process mean. Park, Lee, and Kim
(2004) extended the traditional economic design of an EWMA
chart to the case where the sampling interval and sample size
may vary depending on the current chart statistic. Park and Rey-
nolds (2008) considered IPC monitoring schemes using an eco-
nomic design approach under the inherent wandered of the
process. Subsequently, it can be represented as an ARIMA (0,1,1)
model. In the model, they considered a combination of two EWMA
charts, with one EWMA statistic using the observed deviations
from the target, and the other EWMA statistic using the squared
deviations from the target. It was found that, if only one control
chart is planed to be used for simplicity, then the two EWMA con-
trol chart provides very good performance and this causes the
chart more preferable to be used than others. However, it should
be noted that the EWMA chart is the standard. Although the con-
trol chart is considered for monitoring a process in the current set-
ting, but the two EWMA control chart, actually have much better
performances. Serel (2009) studied the case where the assignable
cause changes only the process mean or dispersion. The economic
design of EWMA mean charts was extended to the case where the
quality related costs are computed based on a loss function. Serel
and Moskowitz (2008) showed that when the assignable causes
lead to changes in both process mean and variance, simultaneous
use of mean and dispersion charts is important for detecting the
changes quickly. In their work, joint economic design of EWMA
charts for process mean and dispersion have been explored.

The aim of this work is to develop the integrated economic de-
sign of EWMA control chart for determining the values of six test
variables of the chart (which are the sample size (n), the sampling
interval (h), the number of subintervals between two consecutive
sampling times (g), the warning limit coefficient (w), the number
of sample taken before planned maintenance (k), and the exponen-
tial weight constant (r)). By using this developed genetic algorithm
to optimize these parameters (six test parameters), the total cost
per hour (E[H]) is expectedly minimized.

2. Model consideration

In this work, we develop an integrated model of control chart
with reference to the three-scenario integrated model firstly pur-
posed by Linderman, McKone-Sweet, and Anderson (2005). Then
a generalized analytic model is employed to determine the optimal
policy for using coordinated with Statistical Process Control and
Planned Maintenance in minimizing the total expected cost. Re-
cently, Zhou and Zhu (2008) modified the Linderman model from
three to four policies under determination of the optimal policy
for minimization of the total expected cost with coordination of
Statistical Process Control and Planned Maintenance. For this re-
search, an integrated model between Statistical Process Control
and Planned Maintenance of the EWMA control chart is conducted.
In developing, warning limit is considered to increase policy from
four policies to six policies such as warning limit alert signal and
warning limit no signal. As shown in Fig. 1, the framework of the
integrated model illustrates six different scenarios, in which each
scenario is further elaborated as following. In Scenario 1, the pro-
cess begins with a ‘‘in-control’’ state and inspections occur after
h hours of monitoring as to whether the process has shifted from
an ‘‘in-control’’ to an ‘‘out-of-control’’ state. There is an alert signal
in the control chart before the scheduled time when maintenance
should be performed. But the signal is false, that is to say, the pro-
cess is still ‘‘in-control’’. Since searching and determining false sig-
nal take time and incur cost, Compensatory Maintenance is
performed. In Scenario 2, similar to Scenario 1, there is also a sig-
nal. While the signal is valid and the process shifts to an ‘‘out-of-
control’’ state, it results in Reactive Maintenance. In Scenario 3,
the process begins with a ‘‘in-control’’ state and inspections occur
after h hours of monitoring as to whether the process has shifted
from an ‘‘in-control’’ to an ‘‘warning limit’’ state. And there is an
alert signal in the control chart before the scheduled time when
maintenance should be performed. In Scenarios 4 and 5, no signal
occurs in the control chart before the scheduled time. Then at the
(k + 1)th sampling interval, appropriate maintenance should be
arranged. In Scenario 4, the process is always ‘‘in-control’’, we
perform Planned Maintenance. When the process shifts to an
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‘‘out-of-control’’ state in Scenario 5, Reactive Maintenance takes
place because the ‘‘out-of-control’’ condition occurred before the
scheduled time, and additional time and expense will be incurred
to identify and solve the equipment problem. In Scenario 6, the
process begins with an ‘‘in-control’’ state and no signal occurs in
the control chart before the scheduled time. Then at the (k + 1)th
sampling interval, appropriate maintenance should be arranged.
And in Scenario 6, the process is always ‘‘in-control’’, we perform
Planned Maintenance.

3. Cost analysis of integrated model

The process begins with an in-control state with a Process Fail-
ure Mechanism that follows a Weibull distribution. Denote,

f ðtÞ ¼ kvvtv�1e�ðktÞv where k; v; t P 0

The Weibull cumulative distribution function has the form as

FðtÞ ¼ 1� eðktÞv where k; v; t P 0

At this stage, we develop the integrated model based on the Lin-
derman model (2005) and the general cost function of Lorenzen
and Vance (1986), and assumed six models of the integrated sys-
tem are considered which are Scenarios 1–6. After that, the ex-
pected cycle time and cycle cost for each of the six scenarios are
investigated as a following:

Scenario 1 (S1). The process begins with a ‘‘in-control’’ state and
inspections occur after h hours of monitoring as to whether the
process has shifted from an ‘‘in-control’’ to an ‘‘out-of-control’’
state. And there is an alert signal in the control chart before the
scheduled time when maintenance should be performed. But the
signal is false, that is to say, the process is still ‘‘in-control’’. Since
searching and determining false signal take time and incur cost,
Compensatory Maintenance is performed.

E½TjS1� ¼ h
Xk

i¼1

ipI
ið1� FðihÞÞ þ T0 þ TC

E½CjS1� ¼ CI h
Xk

i¼0

ipI
ið1� FðihÞÞ þ cCTC

" #

þ ðCF þ nCV Þ
Xk

i¼0

ipI
ið1� FðihÞÞ þ Cf þ CC
Scenario 2 (S2). It assumes that the process shifts to an ‘‘out-of-
control’’ state prior to the Planned Maintenance and process failure
mechanism follows a Weibull distribution, the in-control time fol-
lows a truncated Weibull distribution.

f ðtjðkþ 1ÞhÞ ¼ f ðtÞ
Fððkþ 1ÞhÞ ¼

kvvtv�1e�ðktÞv

1� e�ðkðkþ1ÞhÞv ; 0 6 t 6 ðkþ 1Þh

then we have

E½TjS2� ¼
Z kh

0
tf ðtjðkþ 1ÞhÞdt þ hARLO � sþ nEþ TA þ TR

where s ¼
Pk

i¼0

R ðiþ1Þh
ih ðt � ihÞf ðtjðkþ 1ÞhÞdt, ARLO: The average run

length during out-of-control period[]

ARLO ¼
1

1�/ L� e
r

X

ffiffiffiffiffi
r

1�r

p
� �

þ/ �L� e
r

X

ffiffiffiffiffi
r

1�r

p
� �

E½CjS2� ¼ CI

Z kh

0
tf ðtjðkþ1ÞhÞdt

" #
þCO½hARLO�sþnEþcATAþcRTR�

þ1
h

E½TjS2�ðCF þnCV ÞþCR

ð1Þ
Scenario 3 (S3). The process begins with a ‘‘in-control’’ state and
inspections occur after h hours of monitoring as to whether the
process has shifted from an ‘‘in-control’’ to an ‘‘warning limit’’
state. There is an alert signal in the control chart before the sched-
uled time when maintenance should be performed.

E½TjS3� ¼
Z khr

0
tf ðtjðkþ 1ÞhÞdt þ ð1� c1ÞsT0aþ hARLO � n

þ nEþ TA þ TR ð2Þ

where s is the expected sampling frequency while in control

s ¼ 1

þ 1� qg�1

1� q
þ ð2g� 1Þqg�1

� � X1
j¼2

1�
Z j�1

0
kvvtv�1e�ðktÞv dt

 !" #
ð3Þ

q is the conditional probability that the sample point is plotted in
the warning region. Given that the process is in control and is equal
to

q ¼ 2½/ðLÞ � /ðwÞ�
/ðLÞ � /ð�LÞ ð4Þ

cw is the indicator variable which equals 1 if production continues
during warning period or 0 otherwise, n is average time lag between
the sampling time point, which is just prior to the occurrence of the
assignable cause, and the time point that the assignable cause oc-
curs. And it can be shown that

n ¼
Xg�1

j¼0

ðp1js1jÞ þ p2s2 ð5Þ

p1j is the ratio of the sampling interval h � jd to the average sam-
pling interval and is equal to

p1j ¼
qjð1� qÞh� jd

q
Pg�2

i¼0 qidþ ð1�qÞ
Pg�1

i¼0 qiðh� idÞ
for j ¼ 0;1;2; . . . ;g� 1

ð6Þ

Suppose that the interval h between two fixed times is divided into
g subintervals of length d, where d ¼ h

g, p2 is the ratio of the sam-
pling interval d to the average sampling interval and is equal to

p2 ¼
q
Pg�2

i¼0 qid

q
Pg�2

i¼0 qidþ ð1� qÞ
Pg�1

i¼0 qiðh� idÞ
ð7Þ

s1j is the assignable cause occurred between the sampling time
points ih + jd and (i + 1)h.

s10 ¼
R ðiþ1Þh

ih tve�ðktÞv dtR ðiþ1Þh
ih tv�1e�ðktÞv dt

� ih; ð8Þ

s1j ¼
R ðiþ1Þh

ihþjd tve�ðktÞv dtR ðiþ1Þh
ihþjd tv�1e�ðktÞv dt

� ih� jd for j ¼ 1;2;3; . . . ;g� 1 ð9Þ

s2 is the assignable cause occurred between the ith and (i + 1)st
sampling time points with sampling interval d. The expected in-
control time interval during this period may be written as

s2 ¼
R ðiþ1Þd

id tve�ðktÞv dtR ðiþ1Þd
id tv�1e�ðktÞv dt

� id ð10Þ

E½CjS3� ¼ CI

Z kh

0
tf ðtjðkþ1ÞhÞdt

" #
þCO½hARLO�nþnEþcATAþcRTR�

þ 1

q
Pg�2

i¼0 qidþð1�qÞ
Pg�1

i¼0 qiðh� idÞ
E½TjS3�ðCF þnCV ÞþCf saþCR ð11Þ
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Scenario 4 (S4). No signal occurs in the control chart before the
scheduled time. Then, at the (k + 1)th sampling interval, appropri-
ate maintenance should be arranged. In S4, the process is always
‘‘in-control’’, we perform Planned Maintenance.

E½TjS4� ¼
Z kh

0
tf ðtjðkþ 1ÞhÞdtðkþ 1Þh

�
Z kh

0
tf ðtjðkþ 1ÞhÞdt þ Tp ¼ ðkþ 1Þhþ Tp ð12Þ

E½CjS4� ¼ CI½ðkþ 1Þhþ cpTp� þ kðCF þ nCV Þ þ Cp ð13Þ
Scenario 5 (S5). The process begins in control. When the process
shifts to an ‘‘out-of-control’’ state, Reactive Maintenance takes
place because the ‘‘out-of-control’’ condition occurred before the
scheduled time, and additional time and expense will be incurred
to identify and solve the equipment problem.

E½TjS5� ¼ ðkþ 1Þhþ TR ð14Þ

E½CjS5� ¼ CI

Z kh

0
tf ðtjðkþ 1ÞhÞdt

 !

þ CO ðkþ 1Þh�
Z kh

0
tf ðtjðkþ 1ÞhÞdt þ cRTR

" #
þ kðCF þ nCV Þ þ CR ð15Þ
Scenario 6 (S6). The process begins with an ‘‘in-control’’ state and
no signal occurs in the control chart before the scheduled time.
Then at the (k + 1)th sampling interval, appropriate maintenance
should be arranged. In S6, the process is always ‘‘in-control’’, we
perform Reactive Maintenance.

E½TjS6� ¼ ðkþ 1Þhþ TR ð16Þ

E½CjS6� ¼ CI

Z kh

0
tf ðtjðkþ 1ÞhÞdt

 !

þ CO ðkþ 1Þh�
Z kh

0
tf ðtjðkþ 1ÞhÞdt þ cRTR

" #
þ kðCF þ nCV Þ þ CR

ð17Þ

Next, determination of the hourly cost (E[H]) is performed.

The model can be considered as a renewal-reward process;
hence, the expected cost per hour E[H] can be expressed as

E½H� ¼ E½C�
E½T� ð18Þ

where

E½T� ¼ E½TjS1�PðS1Þ þ E½TjS2�PðS2Þ þ E½TjS3�PðS3Þ þ E½TjS4�PðS4Þ
þ E½TjS5�PðS5Þ þ E½TjS6�PðS6Þ ð19Þ

E½C� ¼ E½CjS1�PðS1Þ þ E½CjS2�PðS2Þ þ E½CjS3�PðS3Þ þ E½CjS4�PðS4Þ
þ E½CjS5�PðS5Þ þ E½CjS6�PðS6Þ ð20Þ

and probability of Scenario 1

PðS1Þ ¼
Xk

i¼1

PðIn-control \ Alert SignalÞ

¼
Xk

i¼1

PðIn-controljAlert SignalÞPðAlert SignalÞ

¼
Xk

i¼1

pI
ið1� FðihÞÞ ð21Þ

Probability of Scenario 2
PðS2Þ ¼
Xk

i¼1

PðOut-of-control \ Alert SignalÞ

¼
Xk

i¼1

PðOut-of-controljAlert SignalÞPðAlert SignalÞ

¼
Xk

i¼1

½FðihÞ � Fði� 1Þh� 1�
Xi�1

j¼1

pI
j

 ! Xk�iþ1

l¼1

pO
l ð22Þ

Probability of Scenario 3

PðS3Þ ¼
Xk

i¼1

PðWarning limit \ Alert SignalÞ

¼
Xk

i¼1

PðWarning limitjAlert SignalÞPðAlert SignalÞ

¼
Xk

i¼1

½FðihÞ � Fði� 1Þh� 1�
Xi�1

j¼1

pI
j

 ! Xk�iþ1

l¼1

pw
l ð23Þ

Probability of Scenario 4

PðS4Þ ¼
Xk

i¼1

PðIn-control \No SignalÞ

¼
Xk

i¼1

PðIn-controljNo SignalÞPðNo SignalÞ

¼ ð1� FðkhÞÞ �
Xk

i¼1

pI
ið1� FðihÞÞ ð24Þ

Probability of Scenario 5

PðS5Þ ¼
Xk

i¼1

PðOut-of-control \No SignalÞ

¼
Xk

i¼1

PðOut-of-ontroljNo SignalÞPðNo SignalÞ

¼ FðkhÞ �
Xk

i¼1

½FðihÞ � Fði� 1Þh� 1�
Xi�1

j¼1

pI
j

 ! Xk�iþ1

l¼1

pO
l ð25Þ

Probability of Scenario 6

PðS6Þ ¼
Xk

i¼1

PðWarning limit \No SignalÞ

¼
Xk

i¼1

PðWarning limitjNo SignalÞPðNo SignalÞ

¼ FðkhÞ �
Xk

i¼1

½FðihÞ � Fði� 1Þh� 1�
Xi�1

j¼1

pI
j

 ! Xk�iþ1

l¼1

pw
l ð26Þ

The economic design of integrated model of EWMA chart is
aimed to be used in determining the optimal values of the six test
variables (n,h,k,w,g,r) such that the expected total cost per hour in
Eq. (18) is minimized.

From examination of the components in Eqs. (19) and (20), it
can be seen that determining the economically optimal values of
the six test variables for the EWMA chart is not straightforward.
To illustrate the nature of the solutions obtained from economic
design of EWMA chart, a particular numerical example is provided.

4. A numerical example and solution procedure

The solution procedure is carried out using genetic algorithms
(GA) with MATLAB 7.6.0(R2009a) software to obtain the optimal
values of n, h, k, w, g and r which will be subsequently used to min-
imize (E[H]).
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The GA is a simulation computer program, evolved from the
concept of natural genetics and biological evolution, that is used
as a random search technique for optimization purpose. To date,
the current GA originated from the models of Holland (1975) has
been applied for several fields such as bioinformatics, computa-
tional science, engineering, mathematics, and manufacturing. For
the GA theory, the solution of a problem is called a ‘‘chromosome’’.
Naturally, a chromosome is composed of a number of genes (the
genetics materials controlled features or characters of individuals).
Compared to other kinds of numerical optimization methods, such
as neural network, gradient-based search, etc., the GA has promis-
ing points in the following aspects:

1. In GA operation, the fitness function values and the stochastic
way (not deterministic rule) are employed to seek for the search
direction of the optimal solution optimization. For this reason,
the GA is capable of being applied for many kinds of optimiza-
tion problems.

2. The ability of GA in a global optimum by mutation and cross-
over facilitates avoidance of being trapped in the local opti-
mum. In the other words, it can serve as a promising
approach to solve complex problems.

3. Since the GA is able to search for many possible solutions (or
chromosomes) within one operation, the global optimal solu-
tion can be achieved efficiently.

From the outstanding advantages discussed above, the GA
extensively serves as a tool for solving the problems of combinato-
rial optimization in many areas (e.g., Chou, Chen, & Chen, 2006;
Chou, Wu, & Chen, 2006; Jensen, 2003). For our example, the solu-
tion process using the GA by MATLAB 7.6.0(R2009a) is briefly de-
scribed as follows:

Step 1. Initialization: The procedure starts at randomly generating
100 solutions that reach the constraint condition of indi-
vidual test parameter. Meanwhile, the constraint condi-
tion represented for individual test parameter is set as
bellows:
1 6 n 6 25; 0:1 6 h 6 5; 2 6 g 6 10; 2 6 w 6 2:5;
20 6 k 6 40; 0:1 6 r 6 0:2
Step 2. Evaluation: This step is to define the fitness of individual
solution by calculating the value of fitness function. For
this research, the fitness function is the cost function
shown in Eq. (11).

Step 3. Selection: After obtained the fitness expression, 30 solu-
tions that are likely to be better fitness of solutions are
selected for breeding the next generation. (For the first
generation the chromosome with the lowest cost is
selected to replace the highest cost chromosome.)

Step 4. Crossover: To produce the new chromosomes for the next
generation, a pairs of parent solutions (from the 30 solu-
tions) are selected randomly and used for crossover oper-
ations. In this example, we apply the arithmetical
crossover method with crossover rate 0.8 as follows:
Table 1
Eight model parameters and their level planning.

Model parameter Level 1 Level 2

CI 10 20
CO 200 400
CP 3000 6000
CR 2000 4000
CC 1000 2000
CF 10 20
D1 ¼ 0:8Rþ 0:2M; D2 ¼ 0:2Rþ 0:8M

where D1 is the first new chromosome, D2 is the second
new chromosome, and R and M are the parents chromo-
somes. Thus, if 30 randomly selected parents are used, then
there will be 60 children are produced. Now, we have the
population size of 90 solutions (i.e., 30 parents + 60 chil-
dren) for next generation.
CV 0.1 0.2
Cf 100 200
Step 5. Mutation: Suppose that the mutation rate is 0.1. In this
illustration, we use non-uniform method to carry out the
mutation operation. As we have 90 solutions, nine chro-
mosomes (i.e., 90 � 0.1 = 9) can be randomly selected to
mutate some parameters (or genes).

Step 6. Repeat Step 2 to Step 5 until the population reaches the
stopping criteria. For our experiment, the procedure is
repeated until no more value to change which is our stop-
ping criteria.

In this section, we test the effect of model parameters on the
solution of economic design of the EWMA chart by conducting
numerical example and sensitivity analysis. For the sensitivity
determination, orthogonal-array experimental design and multiple
regression is used. In the analysis performance, the model param-
eters are fixed as the independent variables, while the six test
parameters (i.e., n,h,k,w,g and r), and the average total hourly cost
E[H], are set as the dependent variables. In Table 1, eight indepen-
dent parameters (i.e., the model parameters) to be tested in the
sensitivity analysis and their corresponding level planning are
illustrated.

The experiment is carried out using the L16 orthogonal array. As
shown in Table 2, the eight independent parameters are then as-
signed to the columns of the L16array. In the L16 orthogonal array
experimental design, there are 16 trials (i.e., 16 different level com-
binations of the independent variables). For each trial, the GA is ap-
plied to produce the optimal solution of the economic design, with
the following model parameters fixed:

c1 ¼ c2 ¼ c3 ¼ 1; k ¼ 0:05; L ¼ 3; v ¼ 2; T0 ¼ 0:2; TC ¼ 0:6;
TA ¼ 0:3; TR ¼ 1; TP ¼ 0:8

The best value parameters by L16 orthogonal array are show in
Table 3.

The best values of 6 variables estimated by the GA are shown in
Table 4.

From Table 4, the optimal values of the policy variables those
minimize E[H] are n* = 6.082, h* = 3.008, w* = 2.494, g* = 5.006,
r* = 0.2, and the corresponding hourly cost is E[H] = 194.640.

The outputs of the GA obtained from every trial is shown in Ta-
ble 2. The next step is to analyze the effect of model parameters on
the solution of economic design of EWMA chart. To do this the data
of each dependent variable in Table 2 is run the regression analysis
by the statistical software (SPSS 15.0). It is found that the output of
SPSS covered an ANOVA regression table and a regression table for
each dependent variable, shows the information corresponding to
statistical hypothesis testing.

Demonstrating in Table 5 is the SPSS output for the sample size
ðn̂Þ. Considered the ANOVA in Table 5(a), if the significance level is
set to be 0.05, we observe that at least one model parameters sig-
nificantly affect the value of sample size ðn̂Þ.

By examining Table 5(b), we find that the cost of quality loss per
unit time (the process is in an in-control state) often estimated by a
Taguchi Loss function (CI) significantly affect the value of sample
size ðn̂Þ. It is noticed that the sign of the coefficients of the cost



Table 2
Model parameter assignment in the L16 orthogonal array and the corresponding
solution.

Trial Model parameter

CI CO CP CR CC CF CV Cf

1 10 200 3000 2000 1000 10 0.1 100
2 20 200 3000 2000 1000 20 0.2 200
3 10 400 3000 2000 2000 10 0.2 200
4 20 400 3000 2000 2000 20 0.1 100
5 20 200 6000 2000 2000 20 0.2 100
6 10 200 6000 2000 2000 10 0.1 200
7 20 400 6000 2000 1000 20 0.1 200
8 10 400 6000 2000 1000 10 0.2 100
9 20 200 3000 4000 2000 20 0.1 200

10 10 200 3000 4000 2000 10 0.2 100
11 20 400 3000 4000 1000 20 0.2 100
12 10 400 3000 4000 1000 10 0.1 200
13 10 200 6000 4000 1000 10 0.2 200
14 20 200 6000 4000 1000 20 0.1 100
15 10 400 6000 4000 2000 10 0.1 100
16 20 400 6000 4000 2000 20 0.2 200

Solution

n h k w g r E[H]

1 5.046 3.002 39.13 2.468 5.004 0.19 194.8
2 5 3 20 2.5 6.641 0.2 196.437
3 5 3 20 2.499 6.618 0.2 373.79
4 6.803 3 20.16 2.498 8.043 0.197 377.055
5 5.034 3.006 20.28 2.497 5.003 0.2 195.46
6 6.082 3.008 20.66 2.494 5.006 0.2 194.64
7 5.045 3.002 20 2.5 5.009 0.2 374.881
8 5.146 3.01 20.01 2.493 5.007 0.2 374.141
9 5.634 4.994 39.08 2.03 5.014 0.01 201.744

10 5.068 4.997 20.06 2.497 5.038 0.042 201.796
11 5 3 20 2.5 6.183 0.2 385.722
12 5.791 3 20.04 2.499 5 0.2 384.504
13 5.009 4.999 20.04 2.5 5.045 0.043 201.477
14 6.303 4.998 20.49 2.496 5.011 0.042 202.231
15 5 3 24.34 2.5 5 0.2 385.642
16 6.557 3.001 20.14 2.5 5.058 0.2 386.679

Table 3
Optimal values for model parameters.

Parameter Value Parameter Value Parameter Value

CI 20 CR 2000 CV 0.1
CO 200 CC 2000 Cf 200
CP 6000 CF 10

Table 4
Optimal values for six variables and the
optimal value of the total hourly costs.

Variable Integrated model (EWMA)

n* 6.082
h* 3.008
k* 20.66
w* 2.494
g* 5.006
r* 0.2
E[H] 194.640

Table 5
SPSS output for the sample size ðn̂Þ.

(a) ANOVA Table

Model Sum of squares df Mean square F P-value

Regression 1.658 1 1.658 5.744 0.031(a)
Residual 4.042 14 0.289
Total 5.7 15

(b) Table of regression coefficients

Independent variable Coefficient Std. error t P-Value

(Constant) 4.452 0.425 10.481** 0.00
CI 0.064 0.027 2.397* 0.031

(a) Predictors: (Constant), CI.

Table 6
SPSS output for the interval between sampling ðĥÞ.

(a) ANOVA Table

Model Sum of squares df Mean square F P-Value

Regression 7.938 2 3.969 12.941 0.001(a)
Residual 3.987 13 0.307
Total 11.925 15

(b) Table of regression coefficients

Independent variable Coefficient Std. error t P-Value

(Constant) 3.5 0.603 5.8** 0.00
CO �0.005 0.001 �3.958** 0.003

(a) Predictors: (Constant), CO.

Table 7
SPSS output for the exponential weight constant ðr̂Þ.

(a) ANOVA Table

Model Sum of squares df Mean square F P-Value

Regression 0.054 2 0.027 12.751 0.001(a)
Residual 0.028 13 0.002
Total 0.082 15

(b) Table of regression coefficients

Independent variable Coefficient Std. error t P-Value

(Constant) 0.154 0.05 3.058** 0.009
CR �3.9 0 �3.516** 0.004

(a) Predictors: (Constant), CR.
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of quality loss per unit time (the process is in an in-control state)
often estimated by a Taguchi Loss function (CI) is positive, indicat-
ing that the higher cost of quality loss per unit time (the process is
in an in-control state) often estimated by a Taguchi Loss function
(CI) generally increases the sample size ðn̂Þ, which is consistent
with the principle of statistical hypothesis testing.

Table 6 is the SPSS output for the interval between sampling ðĥÞ.
It can be seen from the ANOVA in Table 6(a) that if the significance
level is set to be 0.05, then there are at least one model parameters
that significantly affect the value of the interval between sampling
ðĥÞ.

By examining Table 6(b), we find that the cost of quality loss per
unit time (the process is in an out-of-control state) often estimated
by a Taguchi Loss function (CO) significantly affect the value of the
interval between sampling ðĥÞ. It is noticed that the sign of the
coefficients of the cost of quality loss per unit time (the process
is in an out-of-control state) often estimated by a Taguchi Loss
function (CO) is negative, indicating that the higher cost of quality
loss per unit time (the process is in an out-of-control state) often
estimated by a Taguchi Loss function (CO) generally reduces the
interval between sampling ðĥÞ, which is consistent with the princi-
ple of statistical hypothesis testing.

Table 7 is the SPSS output for the exponential weight constant
ðr̂Þ. For the ANOVA in Table 7(a), if the significance level is set at
0.05, then at least one model parameters significantly affect the va-
lue of the exponential weight constant ðr̂Þ.



Table 8
SPSS output for the Hourly Cost ð dE½H�Þ.

(a) ANOVA Table

Model Sum of squares df Mean square F P-Value

Regression 132407.8 2 66203.889 30055.7 0.00(a)
Residual 28.635 13 2.203
Total 132436.4 15

(b) Table of regression coefficients

Independent variable Coefficient Std. error t P-Value

(Constant) 3.955 1.617 2.445* 0.029
CO 0.909 0.004 224.903** 0.00
CR 0.004 0.000 11.565** 0.00

(a) Predictors: (Constant), CO, CR.
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Considering Table 7(b), it is found that the coefficients of the
cost of performing Reactive Maintenance (CR) significantly affect
the value of the exponential weight constant ðr̂Þ. It is noticed that
the sign of the coefficients of the cost of performing Reactive Main-
tenance (CR) is negative, indicating that the higher cost of perform-
ing Reactive Maintenance (CR) generally reduces the exponential
weight constant ðr̂Þ, which is consistent with the principle of statis-
tical hypothesis testing.

Table 8 is the SPSS output for the Hourly Cost ð ^E½H�Þ. It can be
seen from the ANOVA in Table 8(a) that if the significance level
is set to be 0.05, then there are at least one model parameters that
significantly affect the value of the Hourly Cost ð ^E½H�Þ.

By examining Table 8(b), we find that the cost of quality loss per
unit time (the process is in an out-of-control state) often estimated
by a Taguchi Loss function (CO) and the cost of performing Reactive
Maintenance (CR) significantly affect the value of the Hourly Cost
ð ^E½H�Þ. It is noticed that the sign of the coefficients of the cost of
quality loss per unit time (the process is in an out-of-control state)
often estimated by a Taguchi Loss function (CO) is positive, indicat-
ing that the higher cost of quality loss per unit time (the process is
in an out-of-control state) often estimated by a Taguchi Loss func-
tion (CO) generally increases the Hourly Cost ð ^E½H�Þ. And the sign of
the coefficients of the cost of performing Reactive Maintenance (CR)
is positive, indicating that the higher cost of performing Reactive
Maintenance (CR) generally increases the Hourly Cost ð ^E½H�Þ, which
is consistent with the principle of statistical hypothesis testing.

5. Conclusions

In the present paper, we present an integrated model which is
based on two classical manufacturing process control tools, Statis-
tical Process Control and Maintenance Management. The develop-
ment of the integrated economic design of EWMA control chart is
on the purpose of utilization for determining the values of six test
variables of the chart (i.e., the sample size (n), the sampling inter-
val (h), the number of subintervals between two consecutive sam-
pling times (g), the warning limit coefficient (w), the number of
samples taken before Planned Maintenance, (k) and the exponen-
tial weight constant (r)), such that the expected total cost per hour
(E[H]) is expectedly minimized. Establishment of the cost function
is based on the cost model described in Linderman et al. (2005)
with demonstration of an illustrative example. After using the GA
in search for the solution of the economic design, a sensitivity anal-
ysis was then performed in order to test the effect of model param-
eters on the solution of the economic design. Observation of the
results from the sensitivity analysis, revealed that:

1. A higher cost of quality loss per unit time (the process is in an
in-control state) often estimated by a Taguchi Loss function
(CI) generally results in the increased sample size (n).
2. A higher cost of quality loss per unit time (the process is in an
out-of-control state) often estimated by a Taguchi Loss function
(CO) generally leads to the reduction of the interval between
sampling (h).

3. A higher cost of performing Reactive Maintenance (CR) gener-
ally results to the reduced exponential weight constant (r).

4. A higher cost of quality loss per unit time (the process is in an
out-of-control state) often estimated by a Taguchi Loss function
(CO) generally results in the increase of the Hourly Cost (E[H]).

5. A higher cost of performing Reactive Maintenance (CR) gener-
ally results to the increase of the Hourly Cost (E[H]).

6. Suggestion

Using the GA in this research, we fulfill our purpose in obtaining
the optimal variables and minimum hourly cost. However, we have
some suggestion as following. Increasing the policy from three pol-
icies and four policies to six policies affects to the hourly cost value,
that is, apart from the increased number of the quality product the
hourly costs are increasing. Basically, the sampling is increasing
when the warning limit is used to check for low-quality or non-
conforming product. Using our integrated model, the optimal
warning limit (w) that minimizes the hourly cost is w = 2.49, while
the value of warning limit (w) commonly used is 2.00. Besides, the
general value of exponential weight (r) is 0.1, while the value of
exponential weight (r) in this research is 0.2. As the hourly cost va-
lue depends on COandCR, if the number of non-conforming prod-
ucts is increased the overall hourly cost will be increased too.
Essentially, although our optimal warning limit (w)(2.49) is higher
than that of the common value (2.00), less non-conforming prod-
uct manufacturing occurs, subsequently the value of overall total
hourly cost is most likely lower.

7. Future work

In addition to the GA, there still have several other potential
optimization techniques, thus other optimization techniques are
being tested to optimize the integrated model by EWMA control
chart such as pattern search, simulated annealing algorithm, and
threshold acceptance algorithm. Then, the obtained results will
be compared with the result from the GA.
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